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ABSTRACT

A method of interframe motion measurement and compensation, based

on approximation of piecewise linear translation of small rectangular

areas, is presented. This method significantly improves the temporal cor-

relation (10 to 12 dB reduction in interframe variance) and permits re-

duction of sampling rate along temporal axis. A technique of visual

characterization of interframe characteristics, based on temporal cross-

sections, is described.

Some commonly used statistical models for prediction of the

variances of transform coefficients, in intraframe and interframe trans-

form coding, are compared. Results show that measured statistics in

transform domain result in 2 to 4 dB improvement over commonly used

separable covariance models. A method of adaptation for the local changes

in image statistics in transform and hybrid coding is developed. This

results in great improvement (about 4 dB) in performance. A hybrid coding

scheme using motion compensation, frame skipping, and interpolation of

skipped frame along motion trajectory is presented, which further improves

the coder performance.

Interframe transform and hybrid coding schemes are compared against

intraframe transform coding and some simple interframe predictive coding

schemes. Also, distortion-rate curves for hybrid coding, based on models

of interframe motion have been plotted. The applications of transform and

hybrid coding to biomedical x-ray images has been considered, and the

results show that significant compression can be realized for these

images. The effects of distortion due to data compression of x-ray
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projection images (used in computed tomography) on the reconstruction

images (by inverse Radon transform) have been evaluated.

A method for joint optimization of source coding and channel

coding for PCM transmission over noisy channels is presented. It is

shown how this method can be applied to transform coding of images. The

results show that this method performs significantly better than the con-

ventional error correcting codes or schemes with no channel protection.

At a rate of 1 bit/pixel and channel error probability of 10- 2 , the

proposed method results in 10 dB improvement over an ordinary transform

coder.

The performance of several transforms has been compared for some

commonly used intraframe nonseparable covariance models. The results

indicate that the cosine transform performs very close (.05 dB at 1 bit/

pixel) to the optimum K-L transform.

I

9
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CHAPTER I

INTRODUCTION

A monochrome image* is a function of two spatial variables. Many

imaging q'/stems generate multiple frames of images. These multiple

frames could be a function of time (e.g., in television) or other varia-

bles (e.g., angle of view and time in dynamic spatial reconstruciton,

Robb [63)). Sampling of these variables depends on the application, e.g.,

in broadcast television the time axis is sampled at 50-60 samnles per

second to avoid flicker.

For digital processing, an image frame .s sampled along both the

spatial axes. Nyquist sampling theory provides the most impo:tant step

towards a reduction of digital information required to represent a con-

tinuous signal. This theory states that any bandlimited signal, sampled

at a rate greater than twice its highest frequency content, could be re-

produced without introducing any distortion. In the simplest biiary

coding, each sample of an image, called a pixel, is quantized independently

by a finite number of bits. This is called pulse code modulation (PCM).

For raw image data, each pixel is uniformly quanitzed, and is represented

* by a fixed number of bits. For human viewing of an image, 9 bit:-/pixel

gives sufficient resolution. For broadcast television, the data rate for

PCM transmission of images is approximately 65 Mbits/sec.

1.1 Interframe Data Compression Problem

It is evident that the enormous data rates generated by multiple

i g frame images would results in high costs of transmission and/or storage.

* as opposed to a color image

. ... ,.: .



2

Thus, there is a great need for reducing the data rates as much as possible.

Interlacing of the fields in television broadcasting is a form of data com-

pression which exploits the retention properties of human vision.

A simple statistical or visual analysis of the image data reveals

that there is very high correlation between adjacent pixels, both within

a single frame and from frame to frame. This high correlation results in

significant redundant information in the original raw data. The basic

problem of data compression is to effectively exploit this redundancy to

reduce the data rates.

A number of data compression (also called coding) schemes have been

developed for single image frames, [5,22,29,31,36,38,51,53,58,75,77,83,87].

These are called intraframe coding schemes and are based on exploitation

of spatial redundancy. The interframe coding schemes on the other hand,

utilize the redundancy between the frames as well as within the frames

and generally achieve higher compression than the intraframe schemes.

In principle, it is possible to compress the digitized data without

introducing any further distortion (digitization itself introduces distor-

tion). However, such schemes do not yield large enough compression ratios.

It is possible to achieve much larger compression by introducing small but

acceptable (depending on the application) distortion in the originally

digitized data. Thus, we need some quantitative and qualitative measures

of the distortion. The problem of data compression then becomes the mini-

mization of data rates for a given distortion level or, equivalently,

minimization of the distortion for a given data rate.

The quantitative distortion measure we use is the well known mean

square error (MSE or m.s.e.) criterion. Let Uk,i,j be the intensity of
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a sample of a digitized three dimensional image data array and u* be

k,i,j

its reproduced value after data compression. Then the MSE due to data

compression is defined as

MSE = 1 1 7 k2"Ns ° Z Z ,i,j- kij
o ij

where N is the total number of samples in the array over which the MSE
C

is being measured. Such a global criterion of overall mean square error

is not always very meaningful, especially at moderate to high levels of

distortions. So this has to be used with some qualitative measures to

judge the quality of the reproduced images. Some qualitative measures are

given in [12]. A simple method is to judge the images by viewing the

encoded image and comparing it with the original image. The inspection

of the error images (amplified to give full dynamic range) is also

very informative about the distribution and structure of the errors.

Sometimes the MSE measured over locally homogeneous regions of an image

is also quite useful. More sophisticated criteria, such as freqency

weighted mean square error [53], or visibility of errors, etc., are

possible, but are difficult to incorporate in interframe data compression

algorithms.

The MSE is also expressed by a quantity called the signal to noise

ratio (SNR or S/N), defined in decibels (dB), as

(Peak to Peak Signal)
SNR =10 log 1 0  MSEdB

1.2 Digital Image Transmission System and Alplications of Data Compression

Figure 1-1 shows a schematic of a typical digital image transmission

(or storage-retrieval) system. Block 1 consists of an image sensing or
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acquisition system. it could consist of a continuous sensor (e.g., a

raster scanning camera) or an array of detectors arranged at the sampling

grid. The acquired image signal is then sampled (if continuous) and digi-

tized in block 2. Block 3, which is of most interest to us, contains a pro-

cessor which performs data compression. The compressed data is encoded

into bits in block 4. Error protection for transmission over noisy channels

is also done here. The binary coded data is transmitted or stored

(block 5). Blocks 6 through 9 perform the inverse of most of the func-

tions performed in blocks 4 through I (not all the functions performed in

these blocks are invertible, e.g., quantization). For the most part

(chapters II to V) we will be concerned with blocks 3 and 7. There, we

have integrated blocks 4-6 into a single block nae.i "'.harnei'. [n

chapter VI, where we deal with image coding for noisy transmission channels,

e will consider blocks 4-6 in detail.

There are several considerations in developing the data compression

algorithms of block 3 in addition to reducing the data rate. These con-

siderations include the complexity of binary encoder and decoder, real

time processing in blocks 3 and/or 7, uniform or variable data rates,

amount of storage, size of channel buffer, noise characteristics of the

channel, etc.

There are many applications where interframe data compres.ion of

images could be used with great savings in transmission/storage (,sts.

These include television transmission between stations, teleconferencing,

videotelephone, satellite images, biomedical x-ray images in computer

Caided tomography and angiocardiography, etc. For future projections for

i satellite communication traffic for television and teleconferencing,

see [73].

S - - -•--. . . -, --
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1.3 Background and Review of Current Multiframe Coding Techniques

The multiframe data compression schemes reported in the literature

have been applied mostly to video images, generated by a television or

a movie camera, where the interframe variable is time. In some applica-

tions, e.g., television and videophone, a time evolving scene is regis-

tered as a sequence of equi-interval images by a camera, which is mostly

stationary. In other applications, such as remotely piloted vehicle (RPV),

a moving camera is capturing a time changing scene. In the former appli-

cations, the changes from one frame to the next, with respect to a fixed

location in the frame, are mostly localized in some areas of the frame.

While in the latter case, such changes occur throughout the frame. These

changes, including those due to zooming the camera, are called inter-

frame motion.

A simple method of detecting motion between two consecutive image

frames is by measuring the temporal changes between them. Suppose Uk,i, j

represents the intensity of the (i,j)th pixel of the kth frame. If the

interframe difference (IFD) signal,

dk,i,j = uk,i,j - Uk-l,i,j

exceeds a certain threshold, then the (i,j)th pixel of the kth frame is

classified as moving. An inherent assumption here is that the illumination

from one frame to the next remains unchanged. Generally, the moving pixels

occur in clusters [13], and constitute the so called moving areas. The

rest of the image constitutes the stationary areas. Techniques which are

adjusted according to the local changes in spatial and temporal charac-

teristics of images are called adaptive methods.



Interframe coding techniuqes could be broadly classified into thrce

categories. Trh first categorl, a subject most investigated, is called

predictive coding. Here th_- Intensity value of a current pixel in a

ra.iter scanned image is p,-edicu,:d from th- knowledge of the previously

scanned and coded pixels. Generally, the pixel neighborhood used in pre-

diction is limited to be a small set of pixeiz in the oresent and the

preceding image franes. Tnis is because of the Markovian nature of the

data and it limits the memory requirements to slightly more than one

image frame. The prediction error, which represents the new information

in the current pixel, is quantized and coded. For highly correlated data,

the prediction error is generally small and can be coded by much fewer

bits than required in PCM transmission.

The second category, developed more recently for multiframe images,

;s called transform coding. While in most predictive coding schmes we

end up with as many samples as the input data, transform coding packs the

information in much fewer samples which need to be coded. Typically,

the interframe data is divided into smaller three dimensional arrays,

called sub-blocks, of equal size. Each sub-block is then operated upon

by a three dimensional, separable, unitary transform and the selected

* transformed samples are quantized and coded independently. The sub-blocks

are reconstructed by taking the inverse transform. This method .equires

storage equal to the number of frames in the temporal direction (f the

sub-blocks.

The third category is a combination of the above two and is called

hybrid or transform/predictive coding. Here, each image frame is divided

I*
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into equal size sub-blocks and each sub-block is transformed by a two

dimensional separable unitary transform. Predictive coding is then per-

formed along the temporal axis, for each transformed sample, to exploit

frame to frame correlation.

Interframe coding techniques have gained momentum only since the

mid-sixties. A brief review of the recent work is given below for each

of the three categories.

1.3.1 Predictive Coding Techniques - Due to their simple hardware

realization, considerable work has been done on predictive coding schemes.

In [52], prediction is based on the previous pixel of the same scan line

and the technique is essentially an intraframe one dimensional DPCM.

Recognition of the fact that a vast majority of pixels in a given

frame do not differ noticeably from the corresponding pixels of their

preceding frame (i.e., most of the image field in successive frames is

stationary) has led to interframe predictive schemes which do not require

transmission of stationary pixels. In [483, the prediction of a pixel

is simply the intensity value of the corresponding pixel in the preceding

frame. If the absolute value of the prediction error is larger than a

threshold, it is quantized and coded together with the address of the

pixel. Otherwise, the value of the pixel in the preceding frame is re-

peated. This technique -j called conditional replenishment because only

the moving areas of the image are replenished from one frame to the next.

It is evident that the rate at which the code is generated varies depend-

ing on the size of and activity in the moving areas. If the transmission

channel is designed for an average data rate, then an arbitrarily large

buffer would be required to take care of large fluctuations in the level



of motion. To limit the buffer requirement to a reasonable size, a

variable threshold is used. The threshold is increased as the buffer

is filled up, therebv reducing the rate at which the data is &enerated.

It has been noted [57] that the spatial resolution in the

moving areas and the temporal resolution in the stationary areas of an

image can be reduced without noticeable reduction in the quality of per-

ception of the scene. This is called the exchange of spatial and temporal

resolution. In (44] a simple coder has been described which exploits

:ris exchange of resolution to reduce the data rate.

In [13], the conditional replenishment method of [48] has been

improved, and some of the techniques of [441,together with some other

adaptations, have been used to result in a more efficient coder wlt

increased complexity. We have simulated this technique for comparison

purposes and a brief description is given in chapter III. A review of

the above techniques and some other simpler techniques is given in [24].

If some area of a frame is moving at a speed larger than 1 pixel/

frame, then it is obvious that for a pixel belonging to such an area the

correlation with intraframe neighbors would be higher than that with the

corresponding pixel in the preceding frame. Hence, in the absence of the

knowledge about the direction of the motion, an intraframe prediction

error would have a lower variance than the interframe difference .ignal.

Thus, more compression can be achieved by coding the intraframe prediction

error in such moving areas. A scheme utilizing this is reported in [42].

To detect the moving areas an adaptation, better than that of [48] and

[13], is used.
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The correlation, power spectrum, and some other properties of

frame-difference signal are reported in [17]. Mathematical analysis as

well as experimental results are given. The results of this study have

been used in [421 to design a better segmenter of moving and stationary

areas for the purpose of coding. The simulation results for the entropy

of prediction error signal for a variety of predictors (using different

combinations of the neighborhood pixels in the present and the preceding

frame) at various speeds are reported in [23]. Pictures with different

resolutions have been used to compare entropy versus resolution at

various speeds.

Most of the coders described in [13,24,42,44] are designed for a

data rate of 0.25 - 1.0 bits/pixel and for a signal with 1 MHz bandwidth,

the data rate is .5 - 2 Mbits/sec. In [261 a very low bit rate coder,

.1 bit/pixel,or 0.2 Mbits/sec., has been described which reproduces the

stationary areas quite well, but scenes containing moderate and large

motions are visibly smeared and blurred. It combines cluster coding of

[13], a higher order prediction given by the line-to-line difference of

the frame difference signal, subsampling in spatial and temporal direc-

tions as needed, temporal filtering, etc., to achieve this low data

rate. Low pass temporal filtering of the signal is done to reduce the

entropy of the prediction error. A near-ideal low pass filter would re-

quire several frame memories. To limit the memory requirement to one frame,

a simple temporal filtering could be performed by sub-sampling in temporal

direction and then interpolating the missing frames. In [26] temporal

filtering is performed by a simple averaging of the incoming frame and the

previously stored frame. Because of the temporal filtering by averaging, the



jerkiness in motion due to temporal subsampling is less objectionable.

Most of the experiments reported in the aforementioned literature

were carried out on data sampled at about 2 x 106 samples/sec. The

coder of [13] at 1 bit/pixel thus has a data rate of 2 Mbits/sec. For

many applications, a higher resolution with a sampling rate of 8 X 106

samples/sec. is desired. At 1 bit/pixel it would requira a high data

rate of 8 Mbits/sec. A coder is described in [251, which compresses the

data rate to 1.5 Mbits/sec. or .19 bit/pixel. It is reported to give

acceptable quality with some blurring of the moving areas in TV-conference

type of applications, where for the most part the camera is stationary

and the moving subjects do not move too rapidly. This coder utilizes

conditional replenishment of [13], moving area segmenter of [421, a

higher order predictor, and a temporal filter, as in [261. Variable

quantizer levels and sub-sampling in spatial domain are used to maintain

a smooth data rate.

A coder which uses the interframe sample difference, temporal

filtering by attenuating the frame difference signal, spatial subsampling

in both directions when buffer starts filling up, variable length code

words, etc., is reported in [84]. It is designed for 4 MHz videotelephone

and NTSC color TV signals, and operates at an average rate of 6.312 Mbits/

sec. An interframe coder for NTSC color TV signals has also been built

by Nippon Electric in Japan and has been reported in [301. This is de-

signed for high quality transmission and operates at 16-32 Mbits/sec.

A higher order prediction coder which differs considerably from

those discussed above is described in [10]. It assumes that the interframe

data is a sample of a 3-D wide sense stationary random process whose
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covariance is separable and first order Markov in each dimension. Under

this assumption, the optimal predictor is based on seven pixels with

prediction coefficients directly related to the one step correlation in

each direction. Figure 1-2 shows the pixels and their prediction coeffi-

cients used in the prediction of the point marked S. The prediction error is

quantized and coded using variable word length codes. The one step tem-

poral coefficient, aF' has been set equal to 1 to give better prediction

and low data rate in the stationary areas. This scheme also generates

data at a nonuniform rate and to keep buffer requirement reasonably low,

some adaptations have been made to reduce data rate when the buffer starts

filling up. Depending on the buffer contents, a temporal-spatial filtering

is performed in which a weighted average of the interframe difference sig-

nals of the neighboring pixels is taken. The weights are controlled by

buffer contents. An additional temporal filtering is used when buffer

overflow is imminent. This is achieved by attenuating the output of the

temporal-spatial filter used to reduce the entropy of the signal.

In all of the above techniques, the motion in any area of the scene

is inferred from the magnitude of the interframe difference signal. No

efforts are made to measure the nature and the direction of the motion.

Due to comnutational and dimensionality problems, most of the motion

analysis of interframe images has been restricted to translational mo-

tion, see e.g. [9,11,66]. In [661 a mathematical analysis is presented

where an image is divided into smaller areas or zones. For each zone

the displacement vector (x and y coordinates of the motion) and the

corresponding prediction errors (the prediction is based on the pixel

in the previous frame corresponding to the displacement vector of that

zone) are transmitted. For the purpose of analysis, a mathematical model
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for the random video process is constructed to determine the optimum

size of the zone which can be represented by a single displacement vector.

Methods for measuring small displacements, and segmenting an image

into stationary and moving areas with different displacement, has been

considered in [11]. Based on linear regression and approximation, simple

formulas are derived where the motion could be measured from interframe

difference signal and first order spatial differences in x and y directions.

To segment an image into moving and stationary areas, it is assumed that

there is only one moving object undergoing translation. A two state

Markov model with known state transition probabilities is assumed. A maxi-

mum a posteriori (MAP) detector of the Markov chain is found using the

Viterbi algorithm by observing interframe differences and assuming them

to be an independent sequence. Then the method is extended to more than

one moving object. Displacement measurement accuracy of .1 pixel/frame

for motion up to 2-3 pixles/frame has been reported.

An interframe coder using image segmentation and motion measurement

is described in [9], together with some experimental results. Each frame

is segmented into three areas, namely, stationary background, translating

objects, and areas which cannot be predicted from the previous framevia

a tri-state MAP estimator. For stationary background and translating

objects, prediction is based on the corresponding pixels from the previous

frame. While for the remaining areas a spatial predictor is used.

A somewhat different approach to motion estimation and its appli-

cation to interframe coding has been recently published in [50]. Here

a pixel by pixel translational motion is recursively estimated and the

interframe prediction is based on the estimated motion-displaced-location
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in the previous field. The prediction error is cluster coded similar to

[13].

1.3.2 Transform Coding Techniques - The superior performance of

transform coding over other techniques for coding intraframe images is

well known. Its extension to interframe coding using 3-D transforms was

not attempted until recently, mainly because of the requirement of storing

several frames at the transmitter as well as at the receiver, resulting

in exorbitant memory costs. Recent developments in digital technology now

make it possible to store several image frames and thus make transform

coding feasible. Knauer [39] has reported some results on Hadamard trans-

form coding. He considers a block of 4 image frames at a time. Each

frame consists of two interlaced fields and contains 525 x 512 pixels,

each pixel originally quantized to 6 bits. This block of 4 frames is

divided into sub-blocks of size 4 x 4 x 4. Each sub-block is transformed

by a 3-D Hadamard transform (for definitions of various transforms used

in data compression, see [3,31,58]) and the transform coefficients are

truncated to 8 bits. To design the coder at a given bit-rate, a fixed

number of bits are distributed among various transform coefficients, a

majority of which are assigned no bits. The bit assignment has been

found by trial and error to give good visual quality. The coder can adapt

to motion by keeping high spatial resolution for stationary areas and

exchanging it for temporal resoltuion in moving areas.

The transform coder of [39] lacks the mathematical analysis in bit

assignment, which is an important aspect of transform coding. Roese [67],

Roese, et al. [68] and Natarajan andAhmed [49] have extended the mathe-

matical analysis of 2-D transform coding to three dimensions and have

also reported experimental results on interframe coding.isi

- A
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In [67,68] the interframe image random field is modeled as a

3-D, wide sense stationary first order Markov field with separable co-

variance function in each dimension. The interframe image data is

divided into smaller 3-D sub-blocks and then transform coded independently.

The bit assignment is based on the separable covariance model and Shannon

rate distortion bound for the quantizer. The transform samples are quan-

tized using a compander which performs very close to the optimum Max

quantizer. The distribution for each transform sample is assumed to be

Laplacian, except for the DC term, for which a Rayleigh distribution is

assumed. These distributions are reported in [67] to be good approxima-

tions for image data. The variances of the transform samples are found

from the covariance model chosen. Theoretical performance of the coder

using Cosine transform for various block sizes has also been reported.

The mean square error decreases with the increase in block size, but it

also increases the complexity. The experimental results on the actual

data are also reported for the Cosine transform at various bit-rates for

a block size of 16 x 16 x 16.

The fact that the multiframe data cannot be satisfactorily modeled

by separable statistics (covariance), a model such as described in [67]

could yield poor coding performance. But we do need the transform domain

variances to design a coder without resorting to trial and error. In

[49] the authors suggest calculating the 3-D covariance function on a

portion of the image data over a window of the same size as the sub-block

and assuming the random process to be wide sense stationary. From this,

the transform domain variances could be calculated by appropriately taking

the transform. The three dimensional sub-blocks are stored as one dimen-

sional arrays by lexicographic ordering to facilitate the addressing. A
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Kronecker product of the transform matrices is then used to find the

equivalent 3-D transform of this array. The experimental results for a

block size of 4 x 4 x 4 for Cosine and Hadamard transforms are reported

at 1 bit/pixel for 4 MHz signals.

1.3.3 Pybrid Coding Techniques - Because of difficulties in

modeling interframe image fields as well as the increased complexity of

the transform coders, transform/predictive or hybrid coding techniques

have also been investigated in [67,68]. These are extensions of the

intraframe hybrid coding described in [22]. Each frame is divided into

smaller equal size sub-blocks and each sub-block is transformed by a

unitary transform. Then a linear first order predictor is used in the

temporal direction. In a simple or non-adaptive scheme a separable first

order Markov model in each dimension is used. Based on this model the

calculation of transform domain variances and the optimum prediction

coefficient are easily found. Theoretical performance of this coder for

various sub-block sizes is reported. Another scheme, in which the local

changes in the statistics are taken into acount by measuring the statis-

tics, at the transmitter as well as the receiver (and using these statistics

for coding) has been reported with many experimental results. This scheme

has been called adaptive hybrid coding. Results for discrete Cosine and

Fourier transforms at various bit-rates have been reported together with

the effect of channel errors. The adaptive hybrid scheme shows a much

better performance compared to the non-adaptive hybrid coding and transform

coding schemes based on a 3-D separable model. Also, some methods and

experimental results for motion compensation of the camera motion

have been reported in [67].
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1.4 Research Objectives:

In the broad context of interframe coding with emphasis on hybrid

and transform techniques, the following problems have been identified

and solutions proposed together with experimental results.

i) The transform and hybrid coders reported so far allocate

equal bits to all the areas of an image. It is intuitively obvious that

the stationary areas with no interframe activity could be transmitted with

little or no bits, while those with more activity would require more

bits to transmit the changes. Our objective is to find ways of classi-

fying sub-blocks of images into classes of varying temporal and spatial

activity and assignment of bits for various classes.

(ii) Although, in general, the interframe motion is difficult to

characterize, in most cases it could be approximated by linear transla-

tion. Since hybrid coding is based on a block by block coding, we inves-

tigate the methods of measuring translation on a block by block basis and

use it for data compression. A technique for frame interpolation along

motion trajectory will be investigated to achieve higher data compression.

(iii) Since the trajectory of motion of a pixel (or a block)

cannot be estimated perfectly, we consider models and effects of

uncertainty in trajectory estimation for data compression. We would also

like to find rate-distortion curves based on such models.

(iv) We investigate the problem of joint optimization of data

compression and channel encoding for minimizing the overall mean square

error for image transmission over noisy channels.
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(v) As pointed out earlier, the interframe data compression

schemes have been applied only to video images. We look at another

potential area of application, data compression of biomedical x-ray

images.

(vi) The performance of the hybrid and transform coding methods

is dependent on the choice of the transform. We evaluate the relative

performance of various transforms for a variety of non-separable two

dimensional random fields which have been used for modeling image co-

variance statistics. Previous results have considered only the separable

covariance model.

1.5 Description of Experimental Daca Sets:

We have used four very distinct types of multiframe image data

sets. Two of these data sets are video motion images obtained from the

Naval Ocean Systems Center, San Diego, California. The other two data

sets are x-ray images obtained from the Biodynamic Research Unit, Mayo

Foundation, Rochester, Minnesota. A brief description of these data is

provided below.

i) Head and Shoulders (H & S) - contains 16 sequential frames

of 16 mm, 24 frames/second, motion picture of a subject (Walter Kronkite)

against a stationary background in conversation, digitized to 256 x 256

pixels/frame, 8 bits/pixel.

(ii) Chemical Plant - an aerial view of a complex of buildings

and roads from a moving platform, 16 frames digitzed to 256 x 256 pixels/

frame, 8 bits/pixel. It contains a fourth of a 35 mm frame digitized to

512 x 512 pixels/frame.

A2

:; 4
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(iii) Angiocardiograms - 100 X-ray images of the left ventricle

of a human heart taken at intervals of 1/30 sec., after injection of a

contrast material in the blood, contain four complete heart beat cycles.

Each frame digitized to 128 x 176 pixels with 8 bits/pixel. Spatial

resolution is .5 mm.

(iv) Projection Images - 120 X-ray projections of adead dog's

thorax taken at intervals of 3' around an axis approximately through the

center of the thorax. Each image digitized to 128 x 128 pixels with

8 bits/pixel. Spatial resolution is 1 1 mm. These images are used for

3-D reconstruction of the X-ray absorption densities of the thorax.

Since each data set is digitized to 8 bits/pixel, the intensity

range of the original data is between 0 and 255. Therefore, for the calcu-

lations of SNR,the peak-to-peak value of the signal has been taken as

255, even though the actual peak-to-peak signal could be somewhat smaller.

1.6 Dissertation Organization

We first start with the problem of modeling and understanding of

the temporal characteristics of the motion images in Chapter II. There

we propose some methods of translational motion measurement on a block

by block basis. Then we analyze the effects of uncertainty in motion

estimation and define some parameters which give simple measures of this

uncertainty and are useful for developing data compresion algorithms. We

also propose a method of data compression based on temporal subsampling

and interpolation of the missing frames along the motion trajectory.

In Chapter III we describe two interframe predictive schemes. One

of these schemes is reported in [131, and the other one is a simple
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Frame No. 4 Frame No. 8

Frame No. 8 Frame No. 12

Frame No. 12 Frame No. 16

Some Frames of the Original Head and Shoulders (on the Left) and Chemical
Plant (on the Right) Data Sets.

Figure 1-3
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adaptive scheme based on the classification of motion. Results for both

these schemes have been presented primarily for the purpose of comparison

with the schemes of Chapter IV and V.

Chapter IV starts with the basic concepts of transform coding.

Then the results of intraframe 2-D transform coding are presented. They

form a good basis for comparing the interframe 3-D transform as well as

hybrid coding against intraframe coding and provide a measure of

compression gain due to interframe redundancy. Finally, results of some

non-adaptive and adaptive interframe transform coding are presented.

Chapter V presents non-adaptive and many adaptive hybrid coding

schemes and forms the major portion of the interframe coding schemes of

this thesis. Adaptive schemes include classification based on activity,

motion measurement and compensation, and temporal subsampling with inter-

polation along motion trajectory.

In chapter VI we present a new method of data compression for

transmission over noisy channels. This consists of joint optimization

of source and channel coding to reduce the overall MSE distortion in the

signal due to quantization and channel noise. Rate distortion curves for

coding of random variables, and one and two dimensional random processes

are given together with experiments on actual image data.

Summary and conclusions of our investigation as well as future

areas of research are reported in chapter VII. Appendix A discusses the

problem of modeling 2-D image statistics together with some results.

Appendix B gives the results of comparisons of various unitary discrete

transforms used in data compression for some 2-D random fields.
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CHAPTER II

MODELING, MEASUREMENT, AND ANALYSIS OF TEMPORAL CHARACTERISTICS

The temporal characteristics of a sequence of images differ con-

siderably for various applications. The changes between two consecutive

frames basically have two components, deterministic, and random. If a

pixel or a group of pixels in a current frame has a correspondence with

a pixel or a group of pixels in the preceding frame which can be charac-

terized by a deterministic function, then that function is the determin-

istic component and the residual value of the pixel in the current frame

after subtracting the deterministic component will be called the random

component.

In motion images, some cor-raon types of deterministic components

are, linear translation or rotation of objects against a fixed background

in a scene, zooming and panning of the camera, linear and rotational motion

of the camera, etc. In practice, the interframe motion is a combination

of the above and various other motions which are not easy to characterize.

2.1 Motion Characteristics from Temporal Cross-Sections

In a laboratory the interframe motion can be perceived bv viewing

the images as a movie. We have considered an alternative way of present-

ing the data so that the motion can be inferred by looking at the images

in a stationary mode. Since many image processing facilities (including

ours) do not have the capability to display interframe digital data in

real time, this method is useful in visual representation of interframe

motion by stationary images.
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We select a line in any direction, say 0, in the image plane

passing through the region of interest and store the pixels along that

line within the region of interest as a horizontal line of another image

A V Then we select lines from the successive frames at the same spatial

location and store them one below another at vertical sampling intervals

of the images. The resulting line sampled image A over the time period

of interest is a temporal cross-section in the direction 0. The-inter-

frame motion could then be visually analyzed by viewing several temporal

cross-sections as follows.

If a pixel is undergoing linear translation along the direction 0

its path will appear as a curve on the plane of A0. The slope of the

curve (with respect to the vertical axis) gives the velocity of the pixel.

The pixel intensities on this curve will be constant. In the context of

wave propagation, fluid flow (or more generally for systems described by

hyperbolic partial differential equations) etc., these curves are called

the characteristics. If a region is undergoing linear translation per-

pendicular to e, the image of that region will appear on A with a scaling

factor along the vertical axis of A (the scaling factor depends upon the

velocity of the region). If there is a camera zoom, we will see lines

converging or diverging along the zoom axis. If an object in the region

is rotating, we will see sinusoidal traces. Such temporal cross-sections

have been used earlier for tomography x-ray images in which the object is

rotated at uniform speed (by making an equivalence between time and angle)

and they are called sinugrams [63].

Figure 2-1 shows temporal cross-sections for the Head and Shoulders

and the Chemical Plant images along some spatial directions. From images

I IMM
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Head & Shoulders Frame 8 Chemical Plant Frame 8
(a) (c)

Temporal Cross-Sections of the Temporal Cross-Sections of the
Head & Shoulders Images Along Chemical Plant Images Along

(i) Row #183 (i) Row #170
(ii) Row #185 (ii) Row #172

(iii) Column #127 (iii) Column #127
(iv) Column #129 (iv) Column #129
(v) Main Diagonal (v) Main Diagonal

(b) (d)

Temporal Cross-Sections of 16 Frames of Head and Shoulders and Chemical
Plant Images. White lines on images in (a) and (c) show the spatial loca-
tions of the cross-sections.

Figure 2-1
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(a) and (b) we see down and up and right to left motion of the face in

the 16 frames of the Head and Shoulders. From images (c) and (d) we see

that for the Chemical Plant images the motion is almost purely vertically

downward. First slow, then rapid, and just before the end it is almost

stationary. We also notice that the slope of the motion trajectories in

d(iii) increases as we move from left to right, which means that the

bottom of the images is moving faster than the top. Since the ground

objects are stationary, it is only possible if the camera is having motion

other than linear translation parallel to the ground.

2.2 Interframe Motion Trajectory Estimation and Modeling:

Let us assume that each point of a continuous image is undergoing

motion and appears at some location in an image at other time instant.

Let u(x,y,t), a zero mean random variable, denote the intensity of the

(x,y) coordinate of an image at time t. Let each image be a sample of a

2-D homogeneous stationary random process whose covariance is given by

E[u(x',y',t)u(x+x',y+y',t)] = c 2R(JxJ,JyJ) , (2-1)

where E[.] denotes the expectation, 1' denotes the absolute value, and

a2 is the variance of u(x,y,t).

Let (x+dx,y+dy,t+dt) be the new location of the point (x,yt).

Then the trajectory of motion is given by

u(x,y,t) = u(x+dx,y+dy,t+dt) = Constant. (2-2)

Let the observed value of u(x,y,t) be given by

v(x,y,t) = u(x,y,t) + n(x,y,t) (2-3)

I~l °
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when n is the observation noise which is assumed to be white and indepen-

2
dent of u. Let n have zero mean and variance a 2

Now let us assume that the motion trajectory is estimated piecewise,

i.e., at discrete time instants. Let dx and dy be the estimates

of dx and dy, respectively, and

dx = dx- dx, dy = dy -dy

be the motion estimation error. Figure 2-2 shows the concept of trajec-

tory approximation without and with motion estimation for the component

of the motion along x-axis.

The motion compensated interframe estimate is given by

vc (x+dx,y+dy,t+dt) = v(x,y,t) , (2-4)

where superscript c denotes motion compensation. The temporal correla-

tion after motion compensation is given by

-C-c EIv (x+dxy+dyt+dt) v(x+dxy+dyt+dt) I
0dt =2 -

E[v (x+dx,y+dy,t+dt)]

E[v(x,y,t)- v(x+dx,y+dy,t+dt)]

E[{u(x+dx,y+dy,t+dt) + r(x+dx,y+dy,t+dt)} 2 ]

1

2 E[{u(x,y,t) +Tl(x,y,t))" {u(xdx, y+dy,t+dt) +n(x+dx,y+dyt+dt)}I

i
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n
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=0a
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or a 2 E[R(dx[ ,jdy)

Odt = Y 2 +G2 '

g[E R (j dx j,I dy j) ]
or Odt 2 2 (2-5)

For small values of dx and dy most image covariance functions could be

assumed to be approximately linear functions ofldxl and 1dyl and the

above could be approximated by

C R(E[IJdxjl, E[Jidyl)
dt (2-6)

Thus, from the distribution of dx and dy one can obtain the temporal cor-

relation, which may be used for interframe data compression.

We now define another quantity, which we call motion compensated

interframe variance (MCIFV) as

c = E[fv(x+dx,y+dy,t+dt) - vC(x+dx,y+dy,t+dt)}2 ]dt

= E[{v(x+dx,y+dyt+dt)}2 + E[fvc(x+dx,y+dy.t+dt)12j

- 2E[v(x+dx,y+dy,t+dt)-vc (x+dx,y+dy,t+dt)]

= 221o 2 2 c o2.1o2.
= 2 a + ) - 2P dt t ( r +

(Ct = 2( 2) 2 (-P ( t (2-7)

Cdt T1 dt

or P dt - dt/2 (. 2 ') , (2-8)

In the absence of motion compensation (2-5) and (2-7) become

E[R(jdxjjIdyI)1SPd: 1+02 2  (2-9)
dt + 2 2 --
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dt 2 )  dt) (2-10)

In the above discussion, the observation noise was included to show

how it effects temporal correlation. In our coding experiments and

future analysis, we assume that no observation noise is present.

2.3 Motion Measurement Techniques

In this section we describe methods of measuring interframe mo-

tion for digitized images with particular emphasis on data compression.

First, we approximate the interframe motion by piecewise linear

translation of one or more areas of a frame relative to a reference

frame. The segmentation of an image into areas each of which is under-

going approximately the same linear translation and the measurement of

the magnitude and the direction of the linear translation of each area,

is a difficult task. Cafforio and Rocca [11] describe a method for seg-

mentation and measurement of the linear displacement of a single moving

object in a stationary backgrotnd. Then extension of the method to more

than one moving object has also been shown. Thus, method becomes increas-

ingly complex as the number of moving areas increases and the size of

the image grow larger. There is another difficulty with such a method of

segmentation if the information of segmentation and linear translation is

to be coded. Coding of segmentation with arbitrary boundaries would require

a complex scheme and, moreover, the length of the code will be large.

A simpler method is to segment an image into fixed size smaller

rectangular areas and to assume that each of these areas is undergoing

independent linear translation. If these areas are small enough, rotation,

zooming, etc. of larger objects can be closely approximated by piecewise
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linear translation of these smaller areas. Also, it avoids the problem

of coding the segmentation information. Only the displacement vector of

each of the areas need to be transmitted. Another simplification is to

restrict the motion measurement to an integer number of pixels. This

would give an accuracy up to .5 pixels in the moving areas. Since

in practice the motion is not an ideal linear translation, an effort to

estimate the displacement vector up to a fraction of a pixel will not

result in significant improvement in prediction.

A method which has been used for the measurement of linear shift

between two given images, particularly for aerial guidance, is area

correlation [59,85]. This consists of calculating the area correlation

function of the two images. The location of the peak of the correlation

function gives the displacement vector. The area correlation function is

usually calculated via the fast Fourier transform (FFT). To improve the

accuracy of this method some filtering or preprocessing of the images is

required, which could be done in the spatial domain [59] or the Fourier

domain [85].

For the purpose of piecewise linear translation measurement we

divide an image into smaller rectangular areas, which we call sub-blocks,

3 and correlate them with the appropriate areas of the reference image.

Let U be an M x N size sub-block of an image and UR be an (M+2p) x (N+2p)

sub-block of the reference image, centered at the same spatial location

S as U, where p is the maximum displacement allowed in integer number of

pixels in either direction. Then the area correlation function is given by

f ~M Nf f
C (i,j) u (mn)tR(m+in+j), -p < i,j p (2-11)~mml nnl

I II I I
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where superscript f denotes filtering or preprocessing in the spatial

or Fourier domain. A simple spatial operator which has been found to be

useful in area correlation is a four point Laplacian operator given by

u f(m,n) = u(m,n) - fu(m-l,n) +u(m+l,n) +u(m,n-l) +u(m,n+l)}/4) V m,n.

Let V and Vf be the discrete Fourier transforms of U and Uf , respectively,

then a Fourier domain filter given by

Ivf(m,n)I = Iv(m,n)I Y , 0 < Y < 1 (2-12)

where 1.1 represents the magnitude, has been found to be useful [851.

We have found that the performance of the area correlation method

is poor for smaller sub-block sizes, areas of low spatial activity, and

for sub-blocks not undergoing pure linear translation. We have found

another method which does significantly better under most circumstances

for interframe image motion estimation. This method requires a search for

the direction of minimum distortion (or DMD) and is described below.

Let us define a mean distortion function between U and UR as

1M N

D(i,j) =_I I gfu(m,n) -,MN(m+i'n+j)}' -p < i,j < p (2-13)
m1 n=l

where g{x} is a given positive and increasing distortion function of x, e.g.,
2

g{x} = x would correspond to D(i,j) as mean square error function. The

direction of minimum distortion is given by (i,j),such that D(i,j) is

minimum.

One difficulty with finding DMD as stated above is that it requires

evaluation of D(i,j) for (2p+l) x (2p+l) directions and even for motions
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up to 5 pixels along either side of the axes, one has to search 121

directions. We have found a solution to overcome the above difficulty

by making an assumption that if

D (q,k) = min {D(i,j)}

then for m = i-q, n=j-Z, the functions

D2(ImI,ln I ) = D(i,j) - D (q,k), m > 0, n > 0

0

D3(ImIInl) = D(i,j) - D (q,Z), m < 0, n < 0

3 0

D4 (im',!n ) = D(i,j) - Do(q,Z), m > 0, n > 0

are nondecreasing function of Iml and [n(, i.e., for m,n,m',n' > 0,

1 < k < 4,

Dk(m,n) < Dk(m',n), if m < m' and n < n'.

For gfx} = x2 the above is equivalent to the assumption that the covariance

function of images is a nonincreasing function. Most image covariance

functions satisfy this condition, at least in a small neighborhood of the

origin.

Having made the above assumption, we use a 2-D directed search

method, which is similar to the binary or logarithm search [90] in one

dimension. The search is accomplished by successively reducing the area

of search to half or less. Each step consists of searching five directions,

which contain the center of the area, and the midpoints between the center

Ii
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and the four boundaries of the area along the x,y axes passing through

the center. This procedure continues until the plane of search reduces

to a 3 x 3 size. In the final step all the 9 directions are searched and

the location corresponding to the minima is the DMD. The algorithm is

given below.

For any integer m > 0, we define

"(m) = {(i,j) ; -m < ij < m)

JN(m) - f(0,0),(m,O),(O,m),(-m,0),(0,-m)}.

A 2-D Logarithmic Search Procedure for DMD:

Step 1: (initialization)

D(i,j) = - (ij) j j(p)

n' = Llog2 pj

n = max.{2,2 n '-l}

q = k = 0 (or an initial guess for DMD)

where L.J is a lower integer truncation function.

Step 2: M'(n) -. (n).

Step 3: Find (i,j)EA'(n) such that D(i+q,j+t) is minimum. If i=O and

j=O, go to Step 5; otherwise go to Step 4.

Step 4: q +- q+i, Z - +J;A'(n) -4'(n) n (-i,-j); go to Step 3.

Step 5: n - n/2. If n=l, go to Step 6; otherwise, go to Step 2.

Step 6: Find (i,j) E.01) such that D(i+q,j+k) is minimum. q 4- i+q,

X .- L+J. (q,Z) then gives the DMD.

Figure 2-3 illustrates the search procedure for p - 5.
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The figure above shows the concept of the 2-D logarithmic search to find
a pixel in another frame which is registered with respect to the pixel
(i,j) of a given frame, such that the mean-square error over a block de-
fined around (i,j) is minimized. The search is done step by step with c>

* indicating the directions searched at a step number marked. The numbers
circled show the optimum directions for that search step and the * shows
the final optimum direction, (i-3, j+l) in the above example. This pro-
cedure requires only searching 13-21 directions for the above grid as
opposed to 121 total possibilities.

Figure 2-3: A 2-D Logarithmic Search Procedure for the Direction of

Minimum Distortion.
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2.4 Motion Measurement Results

The method of DMD motion measurement, discussed in the previous

section, was applied to the Head and Shoulders and the Chemical Plant

2
data. The distortion function g(x) = x was used so that DMD would cor-

respond to minimum mean square error in registration of the sub-blocks.

A sub-block size of 16 x 16 was chosen. The sizes 16 x 16 and 32 x 32

were found to be good compromises between accuracy of piecewise linear

translational approximation of the motion, the cost of transmitting dis-

placement vectors, and the complexity of data compression schemes using

motion measurement.

For the multiframe data, when the reference image is a neighboring

frame of the image relative to which motion measurement is done, the

quantity D(O,O) will be called interframe variance. Once the DMD for a

sub-block has been found, the area of the reference image in the direction

of DMD is taken as the motion compensated estimate of the sub-block. By

collecting all the motion compensated estimates from a reference frame,

one obtains the motion compensated reference frame. If (q,t) is the dis-

placement vector of the DMD, then D(q,k) is the interframe variance with

motion compensation and D(0,O) is the interframe variance without motion

compensation for that sub-block. These quantities for a frame are ob-

tained by averaging them over all the sub-blocks.

When the reference frame is the same as the current image itself,

D(i,j) computed over complete frame gives the average interframe variance

as a function of uniform linear translation vector (ij). The above

quantity gives a rough estimate of the average motion between two frames.

Figure 2-4 gives the interframe variance as a function of linear trans-

lation for the Head and Shoulders and the Chemical Plant data.

m i i



M . r z

Z1 Zl 3, Z7 V l Q pr ' f

r -- Z Z C

N- -- j f\ N NN

-~ V~~' -n fJz"" r- 0, 
-

a , Jo a -

.4l U1 'U li £3 --

4- -- - 4 N N 0, CC a, -

71J Z -B -n B , B 1 n :D >

C'-4

o-) =£-3n 0'.0 0
a- o N 'U V - -

'I

- l4 li

-I C4 m -T n 'D m 14 C1 en -) 0 r- m a

wlm wA



38

Figures 2-5 and 2-6 show the results of motion measurement for the

central 256 x 128 portion of a frame for the Head and Shoulders and the

Chemical Plant data, respectively, relative to the preceding frame. Part

(a) shows the displacement vectors for each of the 16 x 16 sub-blocks.

The success of the DMD motion location method seems evident from Figure

2-6(a). The image is known to have a vertically downward motion relative

to the previous frame as well as a geometric distortion such that the top

of the image undergoes a smaller displacement and the bottom a larger

displacement [67, p. 1023. We can see that mostly our scheme predicts

a successively larger motion as one moves from the top to the bottom,

as expected.

Parts (b) and (c) of Figure 2-5 and 2-6 show the interframe var-

iance (IFV) without and with motion compensation (MC) for various sub-

blocks. For the Head and Shoulders data (Figure 2-5) there are very wide

variations among sub-blocks in IFV without motion compensation. This is

both due to a variation in motion (from nearly stationary to more than 3-4

pixels/frame) and the spatial activity (from a pixel to pixel correlation

of .99 to less than .8) as a result of non-stationarity. After motion

compensation the variation narrows down significantly and is mostly due

to the spatial activity. For Chemical Plant (Figure 2-6) the variation

without motion compensation is not as wide because there areno stationary

areas.

Comparing the average values of the IFV with motion comepnsation

and the entries of Figure 2-4, we can compute an estimate of the average

motion uncertainty. We assume that the motion uncertainty is identically

distributed along both the image dimensions and that, for small motion,

the IFV is a linear function of motion in pixels. With this assumption
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we compare the IFV with the diagonal entries of Figure 2-4 and find the

average motion by interpolation. For example, the average IFV with motion

compensation for the Chemical Plant frame No. 12 is 139.34 (Figure 2-6(c)).

Comparing this value with the diagonal entries of Figure 2-4(a) we find

that it lies between 0 and 572.96. Thus, by interpolation we obtain an

average value of motion uncertainty after motion compensation as (.25,.25).

Similarly, for the Head and Shoulders data we find it to be approximately

(.i,.i). Observing that for the Head and Shoulders data more than half

the image area is nearly stationary, the average motion uncertainty in the

moving areas can be approximated as (.25,.25) pixel. This means that the

DMD method indeed measures the motion with an accuracy up to the nearest

integer pixel most of the time. Thus, the absolute value of the motion

uncertainty in the moving areas can be modeled as uniformly distributed

between 0 and .5 pixel along each of the dimensions, giving an average

value of .25.

Table 2-1 shows the improvement in the interframe prediction due

to motion compensation. With no motion compensationthe prediction of a

pixel is the value of a pixel in the previous frame, having the same

spatial location whereas with motion compensation, the predicted value

comes from the previous frame pixel in the direction of minimum distortion.

Note that the variance of this error is nothing but IFV. An interesting

and important observation is that there is a wide frame to frame variation

in IFV without motion compensation due to variation in motion activity as

a function of time (4.64 dB between Head and Shoulders frames 6 and 7).

After motion compensation this variation becomes negligible. Showing

that the uncertainty in motion prediction is identically distributed over

.~-. -., 7
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TABLE 2-1

IMPROVEMENT IN SNR OF INTERFRAME PREDICTION ERROR (IFPE) DUE TO MOTION
COMPENSATION. MOTION MEASUREMENT WAS DONE ON 16 x 16 SIZE SUB-BLOCKS
USING DIRECTION OF MINIMUM DISTORTION SEARCH WITH MEAN SQUARE CRITERION.

DATA FRAME SNR OF IFPE IN DECIBELS
SET No.

Without Motion With Motion
Compensation Compensation Improvement

6 29.90 35.88 5.98
7 25.26 35.68 10.42

& 8 26.18 36.30 10.12
SHOULDERS 9 26.03 36.26 10.23

CHEMICAL 11 16.66 26.77 10.11
PLANT 12 16.90 26.69 9.79

13 17.53 26.56 9.03

TABLE 2-2

IMPROVEMENT IN SNR OF INTERPOLATED FRAME (FROM THE PRECEDING AND THE

FOLLOWING FRAMES OF THE ORIGINAL DATA) DUE TO MOTION COMPENSATION.

SNR OF INTERPOLATED FRAME IN DECIBELS

INTERPOI,ATED
FRAME Without Motion With Motion

Compensation Compensaiion Improvement

HEAD & SHOULDERS

FRAME #8 30.48 38.61 8.15

CHEMICAL PLANT
FRAME # 12 19.34 29.56 10.22
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different frames even though the motion itself is not. Figures 2-7(a)

and 2-8(a) show interframe prediction and error images.

The error images shown in Figures 2-7 and 2-8 and elsewhere show

the absolute value of the errors amplified and truncated to the largest

value of 255. The darker points show larger errors. The amplification

for the Head and Shoulders data is ten times and for the Chemical Plant

data it is five times. Only about three-fourths portion of the error

images have been shown for these data sets.

2.5 Frame Repetition and Interpolation Along Motion Trajectory

Frame skipping is one of the simplest methods of data compression

for interframe motion images. For simplicity of discussion, we assume

skipping of every alternate frame. However, the discussion could be

easily extended to other cases. A skipped frame is generally reproduced

by either repeating the preceding frame or by interpolation from the pre-

ceding and the following frames. Both these methods have serious effects

on the quality of motion reproduction. The former results in jerkiness

in the reproduction of the motion and the latter in blurring of the moving

areas. This is evident by looking at part (i) of Figures 2-7(b) and 2-8(b).

Let U2k be a sub-block of the (2k)th frame where frames 2,4,... ,

2k,... have been skipped. Then U*k, the reproduced value of U2k, is ob-

tained (without motion compensation) as follows.

Frame Repetition:

u2k(m,n) = U2kl(m,n) (2-14)

2k 2k-1.

M

7_ _ _ _ _ _
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Frame Interpolation:
4

u k(m,n) = {uk(mn) + uk(m,n)}. (2-15)

2k2k- U2k+l

The disadvantages of simple frame repetition or interpolation can

be overcome by using motion compensation, i.e., making the prediction or

interpolation along the motion trajectory. Using motion compensation

(2-14) and (2-15) are replaced by

U2k(m,n) = u2kl(m+q~n+t) (2-16)

and

U2k(m,n) = U2fuk(m+q,n+£i) + u2k l(m+q',n+i')} (2-17)

respectively, where (q,Z) and (q',Z') are the coordinates of the

displacement vectors of U2k relative to the preceding and the following

frames, respectively.

The improvement in SNR of the interframe prediction error shown

in Table 2-1 and Figures 2-7(a) and 2-8(a) is nothing but the improvement

due to frame repetition along motion trajectory compared with a simple

frame repetition. Table 2-2 and Figures 2-7(b) and 2-8(c) show the

improvement due to the frame interpolation along the motion trajectory

compared with a simple interpolation along the temporal axis.

Thus, we see that the approximation of the motion by linear trans-

lation, on a sub-block by sub-block basis, gives excellent results for

the video motion images considered. These results could be used with

interframe predictive coding schemes, such as DPCM, and still better

with hybrid coding schemes (as discussed in chapter V) with a great im-

provement in coder performance. The results of chapter V show an

U1

r Wr . .
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improvement in compression gain by a factor of two when motion compen-

sation and frame interpolation along motion trajectory are used. Even

higher gains are expected with further increase in the sampling interval

along the temporal axis (i.e., skipping more frames) and interpolation of

missing frames along motion trajectory.

I

I

; .
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CHAPTER III

INTERFRAME PREDICTIVE CODING

In section 1.3.1 we had briefly discussed several predictive

techniques. One of these techniques, called frame replenishment with

cluster coding, is described in the following section. In section 3.2

we report a simple predictive scheme which we call adaptive classifica-

tion prediction. This has been developed primarily for comparison with

other schemes. These schemes have been simulated and applied on the

Head and Shoulders images.

3.1 Frame Replenishment with Cluster Coding

This technique was developed at the Bell Telephone Laboratories

and is described by Candy, et al. [13]. We have implemented it for com-

parison purposes. This technique mainly consists of transmitting the

addresses and quantized amplitudes of the "significant" interframe dif-

ferences of the consecutive frames. The interframe difference at any pixel

location is classified as significant when its absolute value exceeds a

fixed threshold. The experimental observation that most of the signifi-

cant interframe differences occur in clusters along any frame line, moti-

vates the fact that the addresses of the significant interframe differences

could be efficiently coded by transmitting the beginning address of a

cluster and a cluster terminator code. It is obvious that most of the

clusters will appear in the areas of an image consisting of moving edges

or objects. This implies that the technique would generate a variable

bit-rate for each frame, depending upon the activity and motion in the

frame. Thus, transmission of the data on a channel with a fixed bit-

rate would necessitate a buffer.
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To avoid an arbitrarily large buffer requirement, some controls

(not without the penality of higher distortion), which limit the buffer

requirement to a given buffer length, are applied. In our simulations we

keep the buffer capacity equal to the average number of coded bits (de-

sired bit rate) per frame. All controls are determined by the number of

bits residing in the buffer. Figure 3-1 describes the buffer control

levels for this scheme.

If the contents of the buffer fall below point A, the next line is

transmitted as it is, using 8 bits/pixel, to prevent buffer under-flow.

When the buffer contents exceed point C, the frame differences in a cluster

are subsampled, i.e., every other frame difference is transmitted and at

the receiver the missing value is interpolated. The sub-sampling continues

until the buffer contents fall below point B. When the buffer contents

exceed points C, D and E, the threshold for classification of signifi-

cant changes is increased successively to lower the number of significant

changes. When the buffer is filled beyond point F, coding is stopped for

one frame period and sub-sampling is continued for the next frame period.

This is done to avoid the buffer overflow.

In the beginning, the first three lines of the first frame are

* force updated, i.e., they are transmitted as 8-bits/pixel. In the next

frame, the next three lines are force updated and so on, except when the

coder is in buffer overflow condition. At this rate a complete frame is

refreshed or updated approximately every 3.5 seconds for 24 frames/sec.

transmission. Nine-bit codes are used to designate starting of a new

frame, starting of a new line, and the starting addresses of the clusters

in a given line. Removal of isolated points of significant changes,

I I I I,
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and bridging of the clusters which are very close are done to reduce

tCe bit-rate. For further details, see [131.

3.2 Adaptive Classification Prediction Coding

As pointed out in the last chapter, if a point moves more than one

and if its direction of motion is unknown, then (for highly correlated

images) spatial prediction performs better than pure temporal prediction.

On the other hand, for stationary pixels a temporal prediction is

preferable.

We have developed a very simple criterion to classify a pixel as

stationary or slowly moving (about 1 pixel/frame in any direction) or

rapidly moving relative to the previous frame. This could be easily

implemented online and is based oIL the interframe differences of its

nearest neighbors in the present frame as shown in Figure 3-2. Only in

the case of slow motion do we approximate any kind of motion or change by

a translatory motion, and we search its direction assuming that it came

from one of the nearest neighbors in the previous frame as shown in

Figure 3-3. The direction of the rapid motion is of no consequence to

us as we rely on spatial prediction in this case. A block diagram of

the scheme is shown in Figure 3-4.

Let Uki,j denote the intensity of the jth pixel on the ith scan

line of the kth frame and Uk 1 be its reconstructed value at the

receiver with no channel errors.

3.2.1 Motion Predictor - As established in the last chapter, the

motion of a pixel is quite close to that of its nearest neighbors and

g5
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interframe difference is a good measure of the extent of the motion.

In order to classify motion we measure, over a neighborhood of the pixel,

a weighted sum of the absolute interframe difference. A small neighbor-

hood would be sensitive to the quantization error, noise, etc., and a

large neighborhood requires more computations and would not respond

quickly to the changes in motion. Keeping that in mind, the neighborhood

of Figure 3-2 was chosen. Also we have chosen the absolute value of the

interframe difference signal as opposed to its square to reduce the sensi-

tivity to large quantization errors. Based on these criteria, we define

a neighborhood activity index k,i,j as

A,~j w~yui~. aki.. (3-1)

a

where w are the weights and JV the pixel neighborhood, and
xy

a

w > 0x,y - (3-2)

JV = {( , p ( i -) ; - , ) ( i i }(3-3)

and

2, if coder is in 2:1 sub-sampling mode
p = (3-4)

1, otherwise.

Then uk,i,j is assigned to one of the three classes--cs (stationary),

cM (slow motion) or cR (rapid motion) as follows.

SJ

gI

- . . . .r h -= | 1 I .i -- .. .. - * -
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cs , if Ak,i,j L 1 or Ak,, j < L2 and uk,iJ z C cS

Uk,i,j if Ak, <L 4 or < L3 and uki!j.l ,

CM, otherwise

where L < L 2 < L3 < L4 are predetermined thresholds. Note that we have

chosen elastic thresholds between the classes. In order to jump from cS

to cM or cR we have a higher threshold (L2 ) than to jump from cM or cR

to cs, L The converse is true for transition from and to class cR.

This reduces the sensitivity of classification to quantization and

other noise.

3.2.2 Intensity Prediction - Based on the classification of

motion, the prediction of Uk,i,j , denoted by uk,i,j , is given by

* if u. ,, c SUk-l, i, j  if uk,i, j Cc

ukij %,l,i-q,j-r' if uk,i j C c M  (3-5)

(P)p* (P
( jk,i,j-p + i,i - l,j Pi J) uk,il,jp if uk,i, CR

where pi and p. are one step correlation coefficients along i and j res-

pectively, and the pair (q,r) E M is chosen so as to minimize

B (q,r) = X wx uki+,J+ * 1rkij I I(x,y)u -li+x+qj+y+r

where

b >0 (3-6)
x,y -

and

S=f(s,t); s,t -1,0,1; (s,t) # (0,0)}

- -I I I I I ll7
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andf land p are given by (3-3) and (3-4). The above simply means that

for class cM we search the direction of the nearest neighbors of

Figure 3-3 which minimizes the index Bk,i,j. Note that for a pixel clas-

sified as having rapid motion we have used a 2-D causal spatial predictor

based on the separable first order Markov covariance model.

3.2.3 Subsampling - The fact that in moving areas spatial

resolution can be traded off for temporal resolution [57] could be

utilized to achieve more compression by subsampling the images in the

moving area in conjunction with the buffer contents. The intensity of

the subsampled pixels is obtained by linear interpolation.

3.2.4 Quantization and Coding - The prediction errors for dif-

ferent classes are quantized using different quantizers. In order to

achieve a rate very close to the entropy of the quantizer output symbols,

a group of quantizer symbols of fixed length is coded at a time and a

binary code is generated using the Huffman coding algorithm [1].

3.2.5 Buffer Length Control - To limit the buffer requirement to

a reasonable size, the quantizer levels are changed as a function of the

numbers of bits residing in the buffer. The levels of the quantizers

are changed so as to decrease the entropy of the output symbols as the

buffer contents increase and vice versa. On the average the entropy of

each of the quantizers is matched to that of the desired transmission

rate (or compression ratio). To prevent buffer overflow or underflow,

we use the same technique as used in [12] and also described in section 3.1.

3.2.6 Simulation Parameters - We have simulated the above scheme

C to achieve a compression ratio (C.R-) of 16 or a bit-rate of .5 bit/pixel A

If
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for the Head and Shoulders data. The buffer length was chosen to store one

coded frame at this rate, i.e., .5 x 256 x 256 bits. The weights of

(3-2) and (3-6) were all selected to be unity except that w a was chosenw0,-p

to be two. This was done since this is the only pixel corresponding to

the current line and is known to be not interpolated. Of the rest three

pixels,which belong to the previous line,as many as two could be inter-

polated pixels, which have higher errors.

The value of the classification thresholds were determined experi-

mentally to minimize the prediction error (for each class) and were found

to be L1 = 10, L2 = 14, L3 = 50 and L4 = 70. However, they could also be

found by finding the expected value of A ,ij for transition from one

class to another. This would require the knowledge of covariance function

of the image and the probability distributions of the interframe difference

signal, the interframe motion and the quantizer noise.

To exchange temporal and spatial resolution, a 2:1 subsampling was

done for classes cM and cR. For simplicity, the values of pi and pj in

(3-5) were chosen to be unity. The buffer control levels are shown in

Figure 3-5.

The input and output levels of various quantizers are shown in

Table 3-1. We have chosen a set of alphabets C {clc 2,c3} for the

output of the quantizer QS" As we are doing a 2:1 subsampling for

classes cM and cR, we have decided to choose the symbols for QM and QR

from Cx C to simplify the design of the binary encoder. Wherever there

are more than one symbols available for an output, only one is sent at a

time and each takes its turn in a fixed order, e.g., the code c1CI/C1 c 3

means that the first time c1c1 is transmitted and the next time cIc 3 is

transmitted. Then again the cycle is repreated. At the decoder, both of
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these codes are decoded into the same output level of the quantizer. The

entropy of the symbol set is .48 bits. We code a group of four alphabets

at a time using the Huffman code [1] and achieve an average rate of .52 bit/

alphabet, which is very close to the entropy and also our desired bit-

rate of .5 bit/pixel, as each pixel generates one alphabet.

3.3 Results and Comparisons:

Table 3-2 shows the performance of the frame replenishment cluster

coding scheme for the Head and Shoulders data. It is assumed that the

first frame is available without any distortion at the receiver as well

as the transmitter. The stationary area corresponds to those pixels of

a frame which are classified as insignificant changes from the previous

frame and the moving area corresponds to the significant changes. Buffer

overflow area corresponds to the area of a frame which is repetition of

the previous frame after the buffer contents exceed point F in Fig. 3-1.

Figures 3-6(a) and 3-6(b) show the resulting images at bit-rates

of .5 bit/pixel and 1 bit/pixel, respectively, assuming no transmission

channel errors. As is evident from Table 3-2, the scheme performs

poorly at .5 bit/pixel since about 60% of the time the contents of

the previous frame are repeated. Thus, the motion would be reproduced

with jerkiness. The temporal lag is evident from Fig. 3-6(a) where the

areas of the image correspond to different frames in the original data.

The performance of the adaptive classification prediction scheme

is shown in Table 3-3 and Figure 3-6(c). Although the SNR is much better

than the cluster coding scheme, there is visibly poor spatial resolution

in the moving areas.
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TABLE 3-2

FRAME REPLENISHMENT CLUSTER CODING RESULTS FOR HEAD AND SHOULDERS DATA.

.5 Bits/Pixel I Bit/Pixel

% OF % OF
IMAGE AREA TOTAL AREA S/N TOTAL AREA S/N

Stationary 29.40 38.6 dB 68.66 39.09 dB

Moving 11.38 31.19 dB 23.61 30.14 dB

Buffer-Overflow 58.52 25.90 dB 6.61 25.48 dB

TOTAL 100.00 27.88 dB 100.00 33.0 dB

TABLE 3-3

ADAPTIVE CLASSIFICATION PREDICTION CODING OF HEAD AND SHOULDER DATA,
BIT RATE = 0.5.

% OF
IMAGE AREA TOTAL AREA S/N

Stationary 55.05 39.09 dB

Slow Motion 37.15 33.97 dB

Rapid Motion 7.76 27.77 dB

TOTAL 100.00 34.75 dB

4 ~

r
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(a) Frame Replenishment Cluster Coding.

Bit-rate = .5 bit/pixel, SNR 28.23 dB.

-DOB

- .' * .. ~ .. * '. .i "

(b) Frame Replenishment Cluster Coding.

Bit-rate --1 bit/pixel, SNR -34.19 dB.

(c) Adaptive Classification Prediction Coding.Bit-rate - .5 bit/pixel, SNR - 34.35 dB.

(Results of Interframe Predictive Schemes for Head and Shoulders Frame 8

Figure 3-6
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The schemes described above have the advantage that they require

a very low storage capacity for the image data, about 1 image line, as

well as have low computational complexity.

I3

3
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CHAPTER IV

TRANSFORM CODING TECHNIQUES

The theory of transform coding of images can be found in [28,31,40,

58,77]. For a brief description see section 1.3.

Figure 4-1 shows a block diagram of a simple 3-D transform coding

scheme for multiframe images. For practical reasons of data manipulation

and management (in hardware or software), the 3-D data array is first

divided into smaller arrays called sub-blocks. Let U be one such array

of size L x M Y N and let V denote its transform. Since for a sub-block

size of L x M x N, L image frames need to be stored, the data array con-

taining L frames will be referred to as a block. Hence further division

of this data has been referred to here as a sub-block. The three dimensional

discrete unitary linear transforms that we consider are separable in the

three dimensions,analogous to the three dimensional Fourier transform of

a continuous function f(x,y,z), viz.,

co 00 co

F~~wV= 2 fW3 f f f(x,y,z)eij(WIX+2Y4W3Z)dx dy dz

= f(x,y,z)e-<0Ixd e-(2Ydy e -3Zdz

For the discrete array U, {u(k,i,j); I < k < L, I < i < M, i < j < N},

the analogous 3-D transformation is
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L M N

v(k,m,n) = I Ju(k,i,j)n (Z, k)YM (m, i)0 N(n,j)
k=l i=l j=l

1 < 2 < L, 1 < m < M, 1 < n < N (4-1a)

where TM is an M x M transform matrix for an M x 1 vector. Because of

the separability of this transformation in each dimension, (4-1a) can be

written as a sequence of three one dimensional transformations

L
v1(Z,i,j) = I u(k,i,J)'YL(2. ,k); I < i < M, 1 < j < N, 1 < Z < L

k=l

M
v 2 (9Z,m.j) = 1 Vl(k,i,j)PM(m,i); 1 < Z < L, 1 < j < N, 1 < m < M

(4-1b)
N

v3(2Z,m,n) I v 2 ( . ,m,j) 4YN(n,j); 1 < Z < L, 1 < m < M, 1 < n < N
j=l

v(Z,m,n) F v3(2.,m,n)

For an arbitrary T, the number of operations would be LMN(L+M+N). If

T is a fast transform, such as the fast Fourier transform (FFT) [8) , then

the operation count is reduced to the order of LMN'Iog 2 (LMN).

Each sample of the transform array, called transform coefficient,

is generally quantized independently by a zero memory quantizer. The

overall coder efficiency is maximized (with respect to the mean square

error criterion) when the transform coefficients are uncorrelated (which

is a property of the optimum Karhunen-Loeve transform [40,76]). The quan-

tizer design depends on the probability distribution of the transformed

samples. Experimentally, for the Cosine transform, the samples v(t,m,n)

have been modeled quite well for image data by the Laplacian density

model, Roese [67],
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=1 k I (4-2)-
p(x) = exp (4-2)

where i and are the mean and the standard deviation of the random var-

iable x. Many times, the first sample v(l,l,l) is modeled by the Rayleigh

density [671. This is because image data is often non-negative and,

for many transforms, the first sample is proportional to the average (or

the so called d.c.) value of the data and is therefore non-negative. Hence

v(l,l,l) would be a non-negative random variable. However, if the data has

been modeled by zero mean random process (or has been converted to be such

by subtracting the mean from the data) then the Laplacian density model

for v(l,l,l) suffices. In the sequel, without loss of generality, we

will assume u(k,i,j) and v(Z,m,n) to be zero mean random variables. Let

2A 2

a( 2,m,n) = E[v2 (Z,m,n)] (4-3)V

be the variance of the transform coefficient v(i,m,n). In Fi. 4-1, if

there are no channel errors in storage or readout of the quantir'ed samples,

we will have v*(Z,m,n) = v*(Z,m,n). The average mean square distortion

between the input and output is defined as

1 L M N 2D I I ' E[{u*(k,i,j) - u(k,i,j)} 1 (4-4)
k=l i=l j=l

Since the transformation is unitary, Parseval's relation implies
I

D E[fv *(Z,m,n) - v(Z,m,n) }2 ]

mn

and in the absence of channel errors

*'
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D= L E[{v*(Z,m,n) - v(k,m,n)})2 ]
LMN Z

If we define the quantizer characteristics as

q(x) = mean square quantizer error for a unit (4-5)

variance input random variable quantized

to x bits

we can write

D G2 (,m,n)q(b, (4-6)
LMN 9,mnv9,~

wbre b ,m,n = number of bits allocated to the coefficient v(k,m,n).

Now, if the total number of bits available is fixed, i.e.,

I I b,m, n 
= LIM (4-7)

where b = average bit rate in bits per sample, the overall distortion is

minimized by finding the optimal bit allocation among the various samples

such that the distortion D given by (4-6) is minimized. Since

b ,m,n > 0 (4-8)

(4-6) is to be minimized subject to the constraints of (4-7) and (4-8).

Another desirable constraint is to require

b ,m,n = integer . (4-9)

The above minimization can be performed by a simple integer programming

algorithm, originally due to Fox [89]. Jain and Wang [86] have applied
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this algorithm for finding integer bit allocation in hybrid coding of

intraframe images for several practical quantizers. (For other methods

of approximate bit allocation see [28,70]). Once the bit allocations are

known, each transform sample v(Z,m,n) is quantized to b mn bits.

As we can see from the above analysis, a transform coder design

requires the knowledge of the transform coefficient variances, a 2 (,m,n).
V

For a simple transform coding scheme with a fixed quantizer for each of

the transform coefficients, the multiframe images are assumed to be wide

sense stationary (although, as pointed out in chapter II, this is a very

poor approximation for the motion images). With this assumption, it can

be easily seen that a2 (9,m,n) can be obtained by the knowledge of the co-
v

variance function of the array U (see [49,67]). One approach has been to

model the covariance by some simple function, e.g., as a product of first

order stationary Markov process covariance models [67] defined by

c = E[u(k',i',j')•u(k'+,i'+m,j'+n)I (4-10a)

2.

where a is the variance of the data sample u(k,i,j) and the pk' Pit and p.

are the one step correlation parameters along the indices k, i, and j,

respectively. An alternative approach is to measure the covariance func-

tion on a portion of the data [49] similar to the intraframe case as in

(4-5) and use these for the rest of the data. However, the transtorm

domain statistics, i.e., a 2(,m,n), can be directly estimated from the
v

transform coefficients. In this case the estimate Is given by

a 2 ( m'n)= v2 (t,m,n) I < Z < L, 1 < m < M, < n < N, (4-11)~o V
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where B is the number of data sub-blocks used in the calculation ofO

(4-11) and the summation is taken over all these sub-blocks.

The array of quantized transform coefficients, V*, is encoded and

transmitted or stored. Its received value, V*, is inverse transformed

(by interchanging U and V and replacing 'P with YT in (4-1)) to obtain the

reproduced value of U as U*. In the coding experiments of this chapter and

the next chapter we assume the channel to be noise free, i.e.,

v* = ---- u* = .
V V U =

For the discussion on coding for noisy channels, refer to chapter VI.

4.1 Adaptive Interframe Transform Coding Schemes

In the transform coding scheme discussed above, the multiframe

images were modeled as a 3-D stationary random process (in the wide sense).

In reality, the multiframe motion images are nonstationary, in general.

The nonstationarity exists in the spatial as well as the temporal dimen-

sions, and the latter appears ti be more severe between the two.

This is because the temporal direction is deterministically related

(except for the noise due to camera & digitization) to the spatial coor-

dinates as discussed in chapter II. Hence, a stationary random process

characterization is not a realistic assumption. The nonstationarity in

the spatial domain is mainly due to the presence of sharp object edges

(or features) within an image frame.

The encoding of multiframe motion images with the assumption of

stationarity, therefore, results in large degradations in the sharp

features within a frame, and in the reproduction of motion features.

Usually, these are the more desirable features.
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Some researchers have developed methods of coding single frame

images by separating the nonstationarities (such as edges) and coding

them separately [75,83]. The residual image (after separating or sub-

tracting edges) is then modeled accurately by a stationary process and

can be coded using a simple transform coding scheme such as described

above (the intraframe or 2-D transform coding is a special case of the

interframe scheme with L = 1). However, these methods result in increased

complexity and their extension to the interframe (or 3-D) transform cod-

ing seems difficult.

We have investigated the possibility of some simple extensions of

transform coding which would improve its performance by accounting,

in some way, for the nonstationarity. We have found that the concept

of "activity index" proposed by Gimlet [21] for intraframe transform

coding can be extended to the interframe coding by finding a modified

activity index. As we have seen in chapter II, the interframe variance

(or IFV) is a good measure of the combined spatial and temporal activity

between two successive frames of multiframe motion images. Thus, an

average of the IFV measured over a sub-block between each pair of succes-

sive frames, given by

1 L M N 2a (L-I)MN X I I fu(k,i,j) - u(k-l,i,j)} (4-12)
k=2 i=l j=l

could be used as a good measure for the activity index.

In [21] the adaptation is achieved by classifying a two dimensional

sub-block into one of the 4 classes, based on the value of the activity

* t index (which is nothing but the variance of the sub-block), by a threshold

classifier. The thresholds are chosen such that each class has equal
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occurrences in an image frame. Each class is assigned different but

fixed number of total bits (obviously a class having higher activity

index is assigned more bits). Thus this scheme operates at fixed bit-

rate per frame. We would like to point out that what is essentially

being achieved by this adaptation is to approximate a nonstationary pro-

cess by 4 piecewise stationary processes. Also note that for each class

the thresholds would vary from one image frame to another with the distri-

bution of motion. Thus, making the piecewise stationary approximation

poorer because, for the same class, the range of activity index is no

longer fixed. Therefore, we have chosen fixed thresholds for classification.

We also choose 4 classes. The selection of number of classes is a

trade-off between performance and complexity. The classification for

each sub-block is coded using 2 bits. For each class separate bit-rates

and statistics are used. Once the statistics for each class are known (or

measured) the bit-rates could be determined from the distortion-rate

curves by fixing the distortion level for each class. The activity index

(or IFV) thresholds for classification depend on the nature of the data

and the sub-block size. Their suitable values can be found from the histo-

gram of the activity index.

In the adaptive shceme described above, both the bit-rate and sta-

tistics were adapted for each class. However, if desired, one of them

could be kept constant at the cost of only a partial improvement over the

usual (or non-adaptive) scheme.

4.2 Experimental Results

The adaptive and non-adaptive interframe transform coding mehods

of the previous sections as well as the usual (or non-adaptive) intraframe
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transform coding were applied to some of the data sets described in

chapter I.

Due to the superior performance of the Cosine transform for data

compression of highly correlated data (see appendix B and [33,49,67]) we

have chosen the transform matrix T throughout this work as the discrete

Cosine transform (or DCT) matrix (see Ahmed et al. [2]) defined as

i M i=, < j <M
TM(i,j) = (4-13)

2M 2 <_ i <M, 1 < j <M

4.2.1 Head and Shoulders Images - All the three methods are com-

pared for this data set. Since it co tains motion images with motion

being localized in certain areas of an image frame, it is a good candidate

for comparing the effect of adaptations. For interframe (or 3-D trans-

form) coding a sub-block size of 16 X 16 x 16 was chosen as in [67]. To

compare the performance of interframe and intraframe schemes, two sub-

block sizes for intraframe transform coding were chosen. The first,

16 x 16, is used to compare the contribution of the temporal redundancy

exploited by the interframe scheme. The second size, 64 x 64, is used to

have the same number of samples in the intraframe and interframe sub-blocks.

Since the performance of a scheme also depends on the knowledge of the

statistics, some of the statistical models are also compared.

* For intraframe coding we compare three statistical models--(i) Sep-

arable covariance model of (A-l) with =i  = .95; (ii) Measured sta-

tistical model, which is obtained by suppressing index k in (4-11), given

in Table A-l; and (iii) Isotropic covariance model with correction given

in Table A-4 (see appendix A for discussion on modeling intraframe

statistics).

- .. .., 4 a t % 4
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Table 4-1 gives the performance of these models for a sub-block

size of 16 x 16. As expected, the performance of the separable model is

the worst and that of the measured statistical model is the best.

The isotropic model with correction is closer to the measured statistical

model at low bit-rates and in between at higher bit-rates. Also, the

superior performance of the measured statistical model increases with

the bit-rate. This is also expected, since at lower bit-rates only

the low order (or low spatial frequency) transform coefficients are

transmitted (from the distortion-rate considerations) and usually the

simple parametric models such as the separable and the isotropic (without

correction) do well in predicting their statistics (as can be seen by

comparing Tables A-1 and A-3).

Table 4-2 shows the performance of the intraframe scheme for the

sub-block size of 64 x 64 for two of the models (except the separable,

which is expected to do relatively worse for higher sub-block size). We

notice an improvement between 1-2 dB for the isotropic model and about

3-4 dB for the measured statistical model over the 16 x 16 case. Thus,

the relative superior performance of measured statistical model increases

with the increase in the sub-block size. This again is expected.

Figures 4-2 and 4-3 show some of the images corresponding to frame

#8 resulting from the intraframe transform coding. In general, the rela-

tive visual quality for various models and array sizes is in agreement with

the mean square performance. At low SNR (below 35 dB), the noise in the

background areas is quite visible in addition to the blurring of sharp

features (or edges). For high SNR (above 37 dB) the visual quality

is good.
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TABLE 4-1

SNR FOR NON-ADAPTIVE INTRAFRAME COSINE TRANSFORM CODING OF THE HEAD

AND SHOULDERS IMAGES FOR THREE STATISTICAL MODELS. SUB-BLOCK SIZE =

16 x 16.

STATISTICAL MODEL

S. BIT-RATE
ISOTROPIC MEASURED

N. PER PIXEL SEPARABLE WITH CORRECTION STATISTICS

1 .25 28.02 dB 29.76 dB 30.29 dB

2 .50 30.03 dB 33.41 dB 34.16 dB

3 1.00 35.47 dB 37.41 dB 39.63 dB

4 2.00 40.92 dB 42.38 dB 45.52 dB

TABLE 4-2

SNR FOR NON-ADAPTIVE INTRAFRAME COSINE TRANSFORM CODING OF THE HEAD

AND SHOULDERS IMAGES FOR TWO STATISTICAL MODELS. SUB-BLOCK SIZE =

64 x 64.

STATISTICAL MODEL

S. BIT-RATE ISOTROPIC MEASURED

N. PER PIXEL WITH CORRECTION STATISTICS

1 .25 31.49 dB 33.29 dB

2 .50 35.31 dB 38.06 dB

3 1.00 39.27 dB 43.71 dB

4 2.00 43.44 dB 48.49 dB

TABLE 4-3

SNR FOR NON-ADAPTIVE INTERFRAME COSINE TRANSFORM CODING OF THE PEAD

AND SHOULDERS IMAGES FOR TWO STATISTICAL MODELS. SUB-BLOCK SIZE =

16 x 16 x 16.

STATISTICAL MODEL

S. BIT-RATE MEASURED

N. PER PIXEL SEPARABLE STATISTICS ,

1 .10 28.53 dB 30.72 dB

2 .25 31.31 dB 34.35 dB

3 .50 33.34 dB 37.60 dB

4 1.00 35.49 dB 41.89 dB
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Table 4-3 shows the performance of the non-adaptive interframe

transform coding method for the separable model of (4-10b) with p, = pj

= = .95, and the measured statistical model of (4-11). Tables 4-4 and

4-5 show the bit allocation for these two models. On comparing these two

tables we notice that the separable model wastes a large number of bits

on high spatial frequencies which contain negligible mean square energy.

Thus, it is a poor model (as pointed out earlier) in predicting the variance

of high spatial frequencies.

On comparing Tables 4-1 and 4-3 we note that for the separable

models, the gains due to temporal redundancy are only realized at low bit-

rates (once again, for the same reason as in the intraframe), and at 1 bit/

pixel there are no practical gains. While for the measured statistical

models, there are gains of 2-4 dB arising from temporal redundancy, the

gains decreasing with increasing bit-rates.

The comparison of Tables 4-2 and 4-3 show that, for the measured

statistical models, the gains achieved by the exploitation of the tem-
I

poral redundancy can be surpassed by an intraframe scheme by simply in-

creasing its sub-block size so that the total sub-block sizes of the

interframe and the intraframe schemes are the same. This result, which

appears unexpected at first, is because we have modeled the temporal

statistics by stationary processes--which is a poor representation in

areas of moderate and large motion.

One quantity, to which the relative performance of the intraframe

and the interframe schemes for motion images is definitely related, is

the amount of motion between successive frames. A lower value of this

quantity (resulting in high temporal correlation) will favor the interframe

_ _ _l Ij
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scheme if all the frames are required to be transmitted. Yowever, a>-

tations due to motion must be made in areas of significant motion.

Since the intraframe scheme requires much less memory (M image

rows) than the interframe scheme (L frames), the above result shows CEr

non-adaptive interframe transform scheme is unattractive from the ML

point of view.

Parts (a) and (b) of Fig. 4-4 show the images corresponding Lc

frame #8 for the non-adaptive interframe transform coding. Comparin? 71

'-4(a) with Figs. 4-2(a)-(i) and 4-2(b)-(i), we note that for compa-n

levels of distortions, at a low SNR, the distortion due to the iatrafr:- -

and the interframe transform coding is differently distributed. The

..tationary areas are much less noisy (or better reproduced) in the irn

rame coding, while the moving area edges are more blurred. This res>

is expected. Thus, from the point of view of the exchange of spatiai -

:emporal resolution for the motion images, the interframe transform coa-x

iet,,od might be more desirable for the same mean square error. This sl-i-

he belief that the MSE alone is not a sufficient criterion in compari:

various schemes. However, at high SNR values the MSE criterion seems

reasonable for comparisons. Figure 4-4(b) shows a significant improver.-

due to measured statistics over the separable model.

Table 4-6 gives the parameters of the adaptive interframe tra-,

-oding scheme. Table 4-7 gives the performance of an adaptive inte rr,

transform coding scheme without adapting the statistics to each class.

This was done to separately study the effects of the adaptations of

bit-rates and the statistics to the classification. For the first en-

of this table even the bit-rates were forced to be the same. Thus, it

i7
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corresponds to the non-adaptive case. This was done to see the distribu-

tion of the distortion among the classes. Table 4-8 gives the performance

of the adaptive scheme for adaptive bit-rates as well as statistics.

From the first entry of Table 4-7 we see that for a non-adaptive

case, the average distortion increases with the class number (as expected)

and there is about 13 dB difference between class 1 (containing areas of

low spatial and temporal activity) and class 4 (containing areas of high

spatial and temporal activity). Comparing this with entry 3 of Table 4-7

we see that, for the same average rate, the adaptation of bit-rates alone

results in great improvement in the distortion for classes 3 and 4 and in

an overall increase of 1.6 dB. From Table 4-8 we see that an additional

gain of 2-2.5 dB is achieved by adapting the statistics. Thus the overall

improvement for the adaptive scheme over the non-adaptive (interframe)

scheme is about 4 dB or a compression gain by a factor of about 2 in addi-

tion to the better reproduction of the high spatial activity areas and

the motion.

Figure 4-4 (c) and 4-4(d) show some images for the adaptive inter-

frame transform coding. We can see that the adaptive scheme does far

better than the non-adaptive scheme. The performance of the adaptive

scheme at .1 bit/pixel is superior to the non-adaptive scheme with the

separable model at .5 bit/pixel. This is evident by comparing images

(a) and (c) of Figure 4-4, where the former reproduces motion much better

(see the lips, the eyes, and the tie). Thus, at low SNR we obtain a com-

pression gain of 5 by the adaptive scheme over the non-adaptive scheme

with the separable model and still get better results.

4.2.2 Chemical Plant Images- Since the Chemical Plant images were

generated by an airborro camera, the motion is moe evenly distributed.
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Since any adaptation without motion compensation is not expecte-d

result in significant improvement, only non-adaptive schemes werc -

Table 4-9 and Figure 4-5 show the results for the measured 3:a-

tistical model. We notice that for these images, the signal r,-

ratios obtained are much lower than those for the Head and SLhui

images. This is because these images have much lower correlatio.

the data is more noisy. Comparing the relative performances I" '.

once again, we note that the intraframe scheme at sub-block si- :

.4 x 64 is almost as good as the interframe scheme for th-e .c

of 16 x 16 x 16.

4.2.3 X-Ray Projection Images - The projection iwac i,

xperiment are the 2-D x-ray projections of a 3-D object a. -u

*;rcund a fixed axis and do not contain motion. The stationd-:I :

.istics is a more valid assumption for these images and thus tr,-

better candidates for interframe transform coding. The given in

,ery high correlation between the rows (along i-axis). So a

,jze of 8 x 32 x 16 was selected.

Table 4-10 shows the performance of the non-adaptive trarsu

_ng method with measured statistics. Figure 4-6 shows an origin.

and some of the coded images at various compression ratios. In

n, mean square error is plotted as a function of frame (oz imn.

the periodic occurrence of the error peaks after every eighth f

due to the fact that these frames lie on the boundaries of our 8

.;ub-blocks. However, this effect diminishes for lower compressi-

,.g., an almost constant mean square error at the compression .a,

i ; achieved.

£
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TABLE 4- 9

SNR FOR NON-ADAPTIVE INTRAFRAME AND INTERFRAME COSINE TRANSFORM CODING

OF THE CHEMICAL PLANT IMAGES WITH MEASURED STATISTICS.

INTRAFRAME INTERFRAME

S. BIT-RATE SUB-BLOCK SUB-BLOCK SUB-BLOCK

N. PER PIXEL SIZE = 16 y 16 SIZE = 64 x 64 SIZE=16 Y16X 161

1 5 27.26 dB 28.51 dB 28.65 dB

2 j.0 30.73 dB 32.10 dB 32.16 dB

3 2.0 36.37 dB 38.14 dB 37.97 dB

TABLE 4- 10

PERFORMANCE OF THE NON-ADAPTIVE INTERFRAME TRANSFORM CODER FOR THE X-RAY

PROJECTION IMAGES.

BIT-RATE COMPRESSION MEAN SQUARE SIGNAL TO

S.N. PER PIXEL RATIO ERROR NOISE RATIO

1 .04 200 5.522 40.71 dB

2 .125 64 2.153 44.80 dB

3 .25 32 1.277 47.07 dB

4 .50 16 0.757 49.34 dB

5 1.00 8 0.373 52.41 dB

6 2.00 4 0.121 57.31 dB
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TABLE 4- 9

SNR FOR NON-ADAPTIVE INTRAFRAME AND INTERFRAME COSINE TRANSFORM CODING

OF THE CHEMICAL PLANT IMAGES WITH MEASURED STATISTICS.

INTRAFRAME INTERFRAME

S. BIT-RATE
SUB-BLOCK SUB-BLOCK SUB-BLOCK

N. PER PIXEL SIZE = 16 x 16 SIZE = 64 x 64 SIZE=16 x 16 x16

1 .5 27.26 dB 28.51 dB 28.65 dB

2 1.0 30.73 dB 32.10 dB 32.16 dB

3 2.0 36.37 dB 38.14 dB 37.97 dB

TABLE 4- 10

PERFORMANCE OF THE NON-ADAPTIVE INTERFRAME TRANSFORM CODER FOR THE X-RAY

PROJECTION IMAGES.

BIT-RATE COMPRESSION MEAN SQUARE SIGNAL TO
S.N. PER PIXEL RATIO ERROR NOISE RATIO

1 .04 200 5.522 40.71 dB

2 .125 ..... 64 2.153 44.80 dB

3 .25 32 1.277 47.07 dB

4 .50 16 "-0757 49.34 dB

5 1.00 8 0.373 52.41 dB

6 2.00 4 0.121 57.31 dB
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(a) original (b) C.R. =200

(c) C.R. =64 (d) C.R. =16

Images resulting from data compression of a projection image at angle of
view = 00.

Figure 4-6
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In the foregoing experiments we have encoded the projection data

and shown the coder performance on this data. However, in practice, the

medically useful information lies in 3-D view or equivalently, in the mul-

tiple adjacent transaxial cross-sections (also called levels) of the ob-

ject, which are reconstructed from the projection data. The various

levels were separately reconstructed by approximating the x-ray cone beam

by a sequence of parallel divergent fan beams. This is a reasonable ap-

proximation for x-ray cone beam sources far from the object, and permits

use of a two dimensional reconstruction algorithm for each level. For

our data a divergent beam two-dimensional reconstruction algorithm [27]

was used. Final reconstructed images for various levels are of size

64 x 64 and were displayed after a sample averaging of three adjacent

video lines.

Figures 4-8(a)-(c) show the reconstructed images at levels 34 and

94 (of the total 128 possible) reconstructed from the original as well as

from the compressed projection data. Figure 4-8(d) shows the images of

the error signal between the original and the compressed reconstructions

at various compression ratios for level 94.

The effect of the data compression on resolution is readily observed

by viewing the reconstructed images at level 94. Notice the blurring of

two dark small circular areas at about the 4 o'clock position (small air

passages in the lung called bronchi) as the compression ratio increases.

The smaller of the two areas (upper right) starts disappearing at com-

pression ratio of 16, while the other one starts disappearing at

32. Generally the larger features are retained at even higher compression

ratios. The error images show that at lower compression ratios the sample-

to-sample errors are more or less uncorrelated, while at higher compression

-atios_.hbe object struc'are is more visible in the errors.

IX "
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(a) Reconstruction of Level #34 (d) Normalized error in reconstruction
of Level #94 due to Data Compression

(i) Original (ii) C.R. = 8 (i) C.R. =4 (ii) C.R. =16
018i C.R.= 32 (iv C.R. = 200 (iii) C.R. = 64 (iv) C.R. = 200

(b) Reconstruction of Level #94 (c) Reconstruction of Level #94

(i) Original (ii) C.R. = 4 (i) Original (ii) C.R. = 32
(iii) C.R. = 8 (iv) C.R. = 16 (Mi) C.R. = 64 (iv) C.R. = 200

Figure 4-8 :Reconstruction Images
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The high values of signal to noise ratio achieved at various co:.-

pression levels demonstrate that large redundancy is present in the pro-

jection images. Preliminary indications are that compression ratios of

8 to 16 are realizable for those applications where very high quality

(pixel by pixel) reproduction of the reconstructed images is desired.

This would include applications where the reconstructed images are to

used for detection and quantification of objects of small size (e.g.,

holes in the septum of the heart or distortion of vessels). In other

applications, where the medically useful information lies in the size,

location and the boundaries of larger objects (e.g., motion of heart v,-

muscie mass, etc.), larger compression ratios, 64 to 200, may be accepza.>

I

I

. : , ,, -- --. . . ..... ..
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CHAPTER V

INTERFRAME HYBRID CODING SCHEMES

Because of the rapid changes in the temporal characteristics of

motion images, it is desirable to have a predictive coding scheme along

the temporal axis. On the other hand, for spatial information transform

coding is more efficient. Hybrid coding utilizes the superior performance

of transform coding in the spatial domain and the simplicity of DPCM to

exploit the temporal correlation with tremendous savings in the memory

(requires only a single frame storage for a first order DPCM). Motion

compensation methods of chapter II can be successfully employed in this

design.

Figure 5-1 shows a simple (or non-adaptive) interframe hybrid

coding scheme. First we assume the data to be wide sense stationary.

Uk is an M x N sub-block of the kth frame. Vk is obtained by a 2-D

transformation of U and is defined similar to the 3-D transform in

(4-1) with L= 1. It can also be expressed as

V = M U •

k M kN~
S

Each transform coefficient is independently coded by DPCM along the

temporal axis (or index k) via a suitable autoregressive model represent-

ing the statistical characteristics of the data in the temporal direction.

In order to limit the storage to one frame, we only consider first order

models. For images having piecewise uniform motion from one frame to the

next, a first order model would be reasonable. Thus, we havet

t
%t For any matrix A we denote A(i,j) E a(i,J) to be its (i,j)th element.

i
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An MxN Image .,,n E~ ~ unze k(n
Sfk Sb - R!ock of +F
kth frame krasrm I -

Predoictor I De!ays
P m,n Mend es

m: 1, 2,., M

~~ (r, 2,n.. N__ _

Vk*(mn) +(m,n)

Vk +
Uk Inverse k

2-D Predictor Qn, YL0 y.r CIsr
Transform ImnMemories,

1, 2,.. .,MN

Figure 5-1: A Non-Adaptive Interframe Hybrid Coding Scheme.

An MxN Size Vmn) Emn)Qatzr k(m,n)
k Sub -Block of ++Q~,Ckth Frame+ mnC

-Transform Peico Delays

L1I-Frame Uk... M
Delays n+,2

m,n

V (m,n) + E(m,n)E

Zk Inverse '4Peitr Delays 1 c
2-D an
Tronsform PM,n, C Memories

n1,2,...,

Figure 5-2: An Adaptive Interframe Hybrid Coding Scheme.
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vk(m~n)= m,nVk~l(m,n) + e'(m,n), mn < m < M, 1 < n < N.

(5-1)

For simplification we assume

a = a = Constant. (5-2)
* ~m, n

Although the above simplified assumption is not very realistic

for motion images, it does not affect the coder performance too adversely

(once the assumption of stationari " has been made). This is because at

low bit-rates only the low order (or high mean square energy) transform

coefficients are transmitted. For these a constant value for the predictor

coefficients a given by (5-2) has been found to be adequate. Withm, n

references to Figure 5-1, the various predictive coding equations, for each

1 < m < N, 1 < n < N, are given as follows.

Predictor (at the Transmitter):

vk(m,n) = av _l(m,n)

vk(m,n) = ^k(m,n) + e*(m,n)

Quantizer:

Input: ek(m,n) = vk(m,n) - vk(m,n)

Output: ek(m,n)

Reconstituted Output at the Receiver:

(m,n) aV l + i(m,n)

Iv
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where k(m,n) is the received value of <(m,n) at the receiver and in

the absence of channel noise e (m,n) = e*(m,n).
kk

For the Markov representation of (5-1), we have [31,86]

2 A 2 2 (12)
a (m,n) = E[e (m,n)] = a (m,n)(l-ct) (5-3)ek

where 2(m,n) A E rv2(mn)]

and the values of a 2(m,n) are calculated either from a 2-D spatial domain
v

covariance model or by direct measurement as in the previous chapter.

(See appendix A for details.)

We assume that each ek(m,n) is Laplacian in distribution and is

quantized by its Max quantizer. Let b be the number of bits requiredm,nl

to code ek(m,n). With these assumptions it can be easily shown that

(5-3) becomes [75,86]

a 2(m,n) = a2v(mn)-(l-2 )/fl-q(b )a 2 }  (5-5)
e v m,n

where q(') is a quantization distortion function defined by (4-5).

Assuming noise-free channel, the average mean square distortion

is given by

M N 2Dff I I ae q  )
m=1 n=1 (bm,n

i1L 02 re n  q(b mn) (1-%t2 ) -6)
I a2(m n). 2 ~ (5-6

m n 1 -q(b m,n)

As in chapter IV, we assume

b n, n Integer > 0 (5-7)
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and M N

S[b = MNb (5-8)

m1l n=l l

where b is the average bit-rate. The selection of b (or the bit allo-m,nl

cation) is made such that (5-6) is minimized. Once again, we use the

integer bit allocation algorithm of [86] to achieve this.

5.1 Adaptive Interframe Hybrid Coding Scheme:

The adaptive strategy of section 4.1 can also be applied to the

hybrid coding method discussed above with appropriate modification.

(In fact this algorithm was first developed for hybrid coding, and then

extended to interframe transform coding.)

The activity index of a sub-block is chosen to be its interframe

variance (IFV) given by

aMN I I fuk(mn) - uk2 l ( m ' n ) }

m=l n=l

Once again, a sub-block is classified into one of four classes by

choosing suitable values for the activity index thresholds. Different

bit-rates and statistics (prediction coefficient a, and transform coeffi-

cient variances av(m,n)) for each class are appropriately selected or

measured. This results in a variable bit-rate.

Figure 5-2 shows the schematic of Fig. 5-1 with necessary modi-

fications for the adaptions.

5.2 Hybrid Coding with Motion Compensation

It has been already pointed out in chapter II and elsewhere that the

temporal direction (for motion images) primarily consists of a deterministic

. .. 4
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component (i.e., motion). It was also shown in chapter II that this

component can be satisfactorily modeled by piecewise linear translations,

and that motion compensation based on this model results in a tremendous

reduction in the interframe varia-ce (hence, improvement in the temporal

correlation). Now we consider how the motion measurement methods of

chapter II could be incorporated in the hybrid coding schemes discussed

above. Let (Zi' z2) be the motion coordinates of the sub-block Uk rela-

tive to the (k-l)th frame. Then the motion compensation is incorporated

simply by replacing Uk_ by Uk 1  iven by

U _(i,j) = Ukll(i+£1,j+Z2 ) 1 < i < M, 1 < j < N

and thus replacing Vk_ by

c T

V k I = T U k_' 
•'

k-1 M k-1M

The motion coordinates (l' z2) are coded together with the other information.

The frame skipping and the interpolation of skipped frames can be

incorporated in the schemes as described in section 2.5.

5.3 Distortion-Rate Curves from Models of Interframe Motion:

In section 2.1, the relationship between the temporal correlation,

the distributions of the interframe motion uncertainty (i.e., dx, dy), and

the measurement noise was established. Assuming a first order Markov

separable model along the temporal dimension and a model for intraframe

covariance, we can thus calculate the distortion-rate functions from the

model of motion uncertainty.

Let dx and dy represent the motion uncertainty in pixels/frame

along x and y axes, respectively. Let N(V,a) and B(a,b) denote the
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Guassian density with mean p aud standard deviation a, and uniform density

in the interval [a,b], respectively. Let us assume that dx and dy are

identically distributed. We also assume that images are noise-free, i.e.,
2== 0 in (2-6).

For the calculation of distortion-rate functions, we assume the

intraframe covariance model to be the isotropic model of (A-2) with

Pi P. = p. We choose two values for parameter p, viz., p = .95 and

p = .90. The first one, which we call Isotropic-1, is a good approximation

for the Head and Shoulders images. The second one, which we call Isotropic-2,

is a good approximation for the Chemical Plant images.

We have chosen two distributions for dx and dy, the Gaussian and

the uniform. For these distributions, we use the approximation of (2-6)

to calculate the temporal correlation coefficient, which is used as the

prediction coefficient a for the hybrid coding scheme desribed in this

chapter. We choose a sub-block size of 16 x 16, and (5-6) for the calcu-

lation of distortion.

Figure 5-3 shows some distortion-rate curves for various distri-

butions of dx and dy for unit variance data. The distributions corres-

ponding to the higher variances of dx and dy (i.e., B(-2,2), B(-4,4),

N(0,1)) could be assumed as reasonable models for coding without motion

compensation (dx = dx), and those with lower variances (i.e., B(-.5,.5),

N(0,.25)) for coding with motion compensation. The curve for a = 0 corres-

ponds to the intraframe transform coding.

Table 5-1 gives the rates for a fixed distortion for each intra-

frame covariance model. These are also shown on Fig. 5-3 by dotted lines.

We notice that in the absence of motion compensation a hybrid coding

scheme achieves a compression gain (over the intraframe transform

,i
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Isotropic-2 model, for the distributions considered. Motion compensation

results in another additional compression gain (over hybrid coding without

motion compensation) by a factor of zl.35 for Isotropic-i and 1.5 for

Isotropic-2.

TABLE 5-1

COMPARISONS OF RATES FOR INTERFRAME HYBRID CODING

FOR VARIOUS DISTRIBUTIONS OF MOTION UNCERTAINTY.

DISTRIUT ION 
RATE (BITS/PIXEL)

X _ISOTROPIC-i ISOTROPIC-2
OF dx,dy D = -16.5 DB D = -18 dB

B(-.5,.5) .4073 .87

N(O,.25) .4518 1.00

B(-2,2) .5278 -

B(-4,4) - 1.49

N(0,1) .5754 1.34

c=0 1.0 2.0

5.4 Experimental Results:

Since the hybrid coding described above requires knowledge of the

initial frame, we assume that the first frame of the data is available as

initial condition without any distortion.

5.4.1 Head and Shoulders Images - All the hybrid coding schemes -

non-adaptive, adaptive, and adaptive with motion compensation (with and

without frame skipping and interpolation)- were applied to this data set.

A sub-block size of 16 x 16 was selected. An isotropic covariance model

with correction as described in appendix A has been used for modeling the

intraframe statistics.

*
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Table 5-2 gives the performance of the non-adaptive hybrid coding

scheme for which the suitable values of the correlation parameters were

found to be pi = .955, p. = .945, a = .80. Comparing Table 5-2 with the

entries (for the isotropic model with correction) in Table 4-1 we notice

an improvement of about 2-2.5 dB at the bit-rates considered, or, equi-

valently, a compression gain by a factor of about 1.5, as a result of

temporal correlation.

Figure 5-4 shows the histogram of the activity index. Although

the dynamic range of the activity index is roughly 0-3000, the histogram

shows the distribution in the range 0-200 (in which about 90% of the samples

are contained) to better utilize the range of the histogram. All the sub-

blocks having activity index above 200 have been lumped in the last column.

We see that a great number of sub-blocks have a very low activity index

(mainly due to stationary background). The threshold values of the activity

index chosen are marked by arrows. Our experimental results indicate that

the coding performance is not very sensitive to threshold selection.

Tables 5-3 and 5-4 show the parameters and the performance of the

4 class adaptive hybrid scheme. Comparison of the correlation parameters

of table 5-3 with those for the non-adaptive hybrid scheme confirms our

earlier statement (in chapters II and IV) that the classification based

on the activity index (IFV) divides the images into classes of varying

spatial activity (characterized by pi and p.) in addition to the varying

temporal activity. The improvement due to the adaptations of the bit-rates

and the spatial-temporal statistics is about 4-4.5 dB, or equivalently, an

additional compression gain (over the non-adaptive hybrid) by a factor of 2.

Figure 5-5 shows the signal to noise ratio as a function of frame

number for the non-adaptive and the adaptive hybrid schemes and the intra-
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TABLE 5-2

PERFORMANCE OF THE NON-ADAPTIVE HYBRID CODING

SCHEME FOR THE HEAD AND SHOULDERS DATA.

S- BIT-RATE SIGNAL TO
N. IT-NOISE RATIO

1 .25 32.28 dB

2 .50 35.49 dB

TABLE 5-3

PARAMETERS OF THE 4 CLASS ADAPTIVE HYBRID

SCHEME FOR HEAD AND SHOULDERS DATA.

CORRELATION
PRO3A.BILITY- PARAMETERS

CLASS ACTIVITY OF Pi p
NO. INDEX OCCURENCE

1 0-20 .5768 .98 .975 .98

2 20-60 .1737 .945 .94 .93

3 60-200 .1320 .92 .905 .80

4 200- .1174 .86 .84 .40

I

TABLE 5-4

PERFORMANCE OF THE ADAPTIVE HYBRID CODING SCHEME

FOR THE HEAD AND SHOULDERS DATA.£
BIT-RATE SIGNAL TO NOISE RATIO IN DECIBELS

S. CLASS # OVER- CLASS # OVER-

N. 1 2 3 4 ALL 1 2 3 4 ALL

* 1 .03 .10 .18 .40 .114 34.82 31.85 31.01 30.32 32.86

2 .075 .30 .45 .75 .25 37.35 35.95 35.65 35.03 36.52

3 .18 .70 .90 1.25 .50 39.80 39.89 40.23 39.70 39.85
- -t

,' .
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frame transform coding scheme (which is a special case of the non-adantive

hybrid scheme r-rhen a = 0). We make the following observations and comments

from the figure. (i) The SNR is almost constant for the intraframe trans-

form scheme. This is expecter! because the spatial contents of the frames

are very similar. (ii) The SNR varies greatly as a function of frame num-

ber for the non-adaptive hybrid coding scheme. This variation is primarily

due to the variation in the amount of motion activity. The frames having

larger motion (e.g., 7 through 10) have low SNR, which is very close to

the SNR of the intraframe scheme. (iii) For the adaptive hybrid scheme,

the SNR is fairly constant (as would be expected from a good adaptive

scheme). Thus, the adaptations proposed are effective.

Figure 5-6 shows the bit-rate as a function of frame number 'or the

adaptive hybrid coding. The frames containing larger motion have higher

bit-rates (as would be expected). However, the bit-rate variation is not

as rapid as would be expected from a predictive coding scheme such as the

frame replenishment cluster coding described in section 3.1 (if the rate

is not controlled by thr butfer fulness).

Figure 5-7 shows some of the images of frame #8 resulting from

adaptive and non-adaptive hybrid coding. Comparing the images of Figs.

5-7(a) (non-adaptive hybrid) and 4-2(a)-(i) (intraframe transform), we

notice that the non-adaptive hybrid scheme reproduces moving areas very

poorly as compared with the intraframe transform scheme. However, the sta-

tionary areas are better reproduced. Note that the only difference be-

tween the coding of these two images is the temporal prediction coeffi-

cient (which is .8 for the hybrid scheme and 0.0 for the intraframe

transform scheme).
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At low bit-rates (Figure 5-7(b)) we notice a shadow (or ghost)

near the sharp edges of moving areas for the adaptive hybrid scheme. If

a smoothing filter is employed in the temporal direction, this distortion

will change to blurring of the moving areas (the interframe transform

coding does that, as can be seen from Figure 4-4(c)). At higher bit-rates

the shadow effect diminishes and the visual quality of the adaptive hybriG

and adaptive interframe transform schemes are comparable. Thus from

complexity consideration, the adaptive hybrid coding scheme is more

attractive.

On comparing the adaptive hybrid coding scheme presented here with

the one presented in [67] we note the following - (i) the mean square per-

formance is slightly (i-2 dB) better for the scheme presented here at

hither bit-rates ( >.5); (ii) the scheme presented in [67] is computation-

ally more complex; (iii) the scheme presented in [67] has a fixed bit-rate

(overall as well as for each sub-block), while the one presented here has

a variable bit-rate; (iv) the scheme presented here reproduces moving

edges more accurately (because of the higher bit-rate in the areas con-

taining moving edges).

Now we present the results for the adaptive hybrid coding with

motion compensation. In these experiments only frames 5 through 9 are

used (to minimize computational costs). However, we have no reason to

believe that the results will be significantly different if all the 16

frames were employed. This is because, with motion compensation, the

interframe activity (measured by IFV) is almost a constant function of

frame number (as was shown in section 2.4). Thus, the distortion and/or

the frame bit-rate would now be (as opposed to the case of no motion

compensation) independent of frame number. Also, as is evident from
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Figure 5-5, the adaptive hybrid coding scheme achieves the steady state

very fast (right after the first coded frame). For results on motion

measurements, frame skipping, interpolation, etc., for these frames, see

section 2.4.

Tables 5-5 and 5-6 give the parameters of the adaptive hybrid

scheme with motion compensation without and with alternate frame skIpPJnT,

respectively. We note the following - (i) Due to change in the distri'>':?c_

of the activity index (greatly reduced), as a result of motion compen-

sation, the thresholds for classification have been lowered; (ii) TihL_

is a great improvement in the temporal correlation as evidenced by the

values of a. We would also like to point out that the average temporal

activity (measured by average motion in pixels/frame of a class is not

directly evident from the value of a which is very nearly the temporal

correlation parameter). Let h represent average temporal activity

after motion compensation. Let pi = Pj = p. Let the intraframe covarianc- e

given by the isotropic model. Then, an approximate value of h is give; ,

h

or h 
L£n -P) -

kn(P)

Znfl-(l-a }n l-(l-p)}

1-a
hP

Computing this quantity from the entries of Table 5-5 we note that it -s

very close to .25 for all the four classes, which further supports our con-

t clusions in chapter II that the motion uncertainty, after motion compensa-

, tion,is fairly uniformly distributed over various classes. Thus, the

t
_ _ _ _ _ _ _ _



108

TABLE 5-5

PARAMETERS OF THE 4 CLASS ADAPTIVE HYBRID CODING SCHEME

WITH MOTION COMPENSATION FOR HEAD AND SHOULDERS DATA.

PROBABILITY CORRELATION
CLASS ACTIVITY OF PARAMETERS

NO. INDEX OCCURRENCE p. P.

1 0-10 .506 .985 .98 .996

2 10-20 .295 .955 .945 .99

3 20-50 .143 .91 .90 .97

4 50- .057 .80 .78 .95

TABLE 5-6

PARAMETERS OF THE 4 CLASS ADAPTIVE HYBRID CODING SCHEME WITH

MOTION COMPENSATION, USING ALTERNATE FRAME SKIPPING AND INTER-

POLATION, FOR HEAD AND SHOULDERS DATA.

CORRELATION
PROBABILITY PRMTR ____

CLASS ACTIVITY OF PARAETER

NO. INDEX OCCURRENCE Pi Pi

1 0-20 .67 .98 .975 .99

2 20-40 .184 .95 .94 .97

3 40-100 .102 .91 .90 .95

4 100- .045 .80 .78 .90

TABLE 5-7

PERFORMANCE OF THE ADAPTIVE HYBRID CODING WITH MOTION COMPENSATION

FOR HEAD AND SHOULDERS FRAMES 5 THRU 9. SKIPPED FRAMES ARE INTER-

POLATED ALONG THE MOTION TRAJECTORY.

FRAMES AVERAGE SIGNAL TO NOISE RATIO IN DECIBELS

SKIPPED? BIT-RATE CODED INTERPOLATED
PER PIXEL FRAMES FRAMES OVERALL

NO .253 38.74 - 38.74

YES .252 39.97 37.58 38.62

YES .125 37.60 36.69 37.12

'4PA
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adaptation due to classification in this scheme is used to compensate

for the spatial non-stationarity. If the images are spatially stationary,

this scheme will reduce to the non-adaptive hybrid coding scheme with

motion compensation.

Table 5-7 gives the coding results for the adaptive hybrid scheme

with motion compensation with and without frame skipping. At an SNR of

about 37 dB a compression gain by a factor of two can be achieved over

the adaptive scheme without motion compensation. Figure 5-8 (parts (b)-

(d)) show the resulting images corresponding to frame 8. Visual quality

of these images is very good. The results indicate that at very low bit-

rates (.125 and below) the adaptive hybrid coding scheme with motion

compensation and frame skipping, and interpolation of skipped frames

along the motion trajectory, is very promising for high quality fidelity

encoding of motion images.

In the experiments on coding with motion compensation, the direc-

tion of minimum distortion (DMD) method described in section 2.3 was used

with mean square distortion criterion for the measurement of motion.

5.4.2 Chemical Plant Images: Due to very low spatial correlation

and large temporal activity, the hybrid schemes without motion compensation

(non-adaptive and adaptive) are expected to result in no significant improve-

ment over an intraframe transform coding scheme. Therefore, the adaptive

hybrid coding scheme with motion compensation was used. A sub-block size

of 16 x 16 was selected.

The motion measurement was done by the area correlation method with

a Fourier domain filtering given by (2-12) (see section 2.3 for details).

The value of y = .5 was found to yield good results. For this data set,

A
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the performance of the area correlation method and the DMD method of motion

measurement is comparable (with DMD being slightly superior).

The intraframe statistics were measured (in the transform domain)

for each of the classes. Tables 5-8 and 5-9 give the parameters and the

performance of the coding scheme. Figure 5-8(a) shows an image correspond-

ing to frame 12. Comparing these results with those of the intraframe

transform scheme with the same sub-block size, we note an improvement of

about 2.5-3 dB. The copipression gain (over the intraframe scheme) at a

distortion level of 30 dB is by a factor of about 2, and smaller at higher

distortion levels.

Thus, we see that the gains due to adaptation and motion compen-

sation are much lower than those for the Head and Shoulders images. From

the results of section 2.5, it is evident that the frame skipping and inter-

polation along motion trajectory can be successfully used for these images

to achieve higher compression similar to those for the Head and Shoulders

images.

5.4.3 Angiocardiogram Images - The temporal activity of these

images exhibit two characteristics of the cardiac cycle - (i) it is

periodic; (ii) it is nonuniformly distributed over a period (cardiac

cycle). Also, at the frame sampling rate of 1/30 sec., the images have

high temporal correlation.

Due to the above properities, the adaptive hybrid coding scheme

(without motion compensation) was found to be ideally suited for these

images. The images were found to be spatially stationary. This was ex-

pected, because these images donot exhibit sharp features which are

characteristic of most video images. Therefore, adapting the intraframe

statistics to classes of different activity index is not necessary.

* _ _ _ _
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TABLE 5-8

PARAMETERS OF THE 4 CLASS ADAPTIVE HYBRID CODING WITH

MOTION COMPENSATION FOR THE CHEMICAL PLANT IMAGES.

PROBABILITY TEMPORAL
CLASS ACTIVITY OF PREDICTION

# INDEX OCCURRENCE COEFFICIENT

1 0-100 .4773 .90

2 100-300 .4143 .75

3 300-750 .0956 .60

4 750- .0128 .40

TABLE 5-9

PERFORMANCE OF THE ADAPTIVE HYBRID CODING WITH MOTION COMPENSATION

FOR THE CHEMICAL PLANT IMAGES. SUB-BLOCK SIZE = 16 x 16.

BIT-RATE SIGNAL TO NOISE RATIO IN DECIBELS

CLASS # OVER- CLASS # OVER-

N. 1 2 3 4 ALL 1 2 3 4 ALL

1 .148 .70 1.0 .875 .5 30.31 30.22 30.09 30.59 30.25

2 .55 1.3 1.5 1.5 1.0 33.77 34.06 33.34 34.59 33.85

3 1.75 2.15 2.25 2.25 2.0 39.57 38.71 37.67 38.85 38.98
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Figure 5-9 shows the bit allocation at two bit-rates. Bit allo-

cation pattern for these images is very unusual compared with video

images. The data seems to have some characteristic frequencies (more

accurately speaking,the discrete Cosine transform basis vectors). An

attempt to model the statistics by any of the commonly used models would

result in a loss of these frequencies, and thereby, a probable loss of

medically useful information for the same signal to noise ratio.

Tables 5-10 and 5-11 give the parameters and the performance of the

coaing scheme. Figure 5-10 shows the classification maps for two of the

frames. It is interesting to note from Fig. 5-10 that the classification

scheme very closely follows the activity of the cardiac cycle. During a

stationary cardiac frame period, the scheme uses less than one-third the

average bits/frame and during an active period, about twice the average

rate.

Figure 5-11 shows two of the original frames (combined into a

single image) and their coded equivalents at some of the compression

ratios. Even at very low bit-rate of .0625 (or a compression ratio of

128) the image quality looks fair (by evaluation of still frames). For

these images a compression ratio of 32 to 128 seems to be realizable.

An accurate reproduction of motion is required for these images. The

methods using the exchange of spatial and temporal resolution, which

are acceptable for the video images, could not be used for these images.

3
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TABLE 5-10

PARAMETERS OF A 4 CLASS ADAPTIVE HYBRID CODING SCHEME FOR

THE ANGIOCARDIOGRAM IMAGES.

CLASS ACTIVITY PROBABILITY TEMPORAL
# INDEX OF OCCURRENCE CORRELATION

1 0. - 10. .570 .98
2 10. - 25. .282 .90
3 25. - 60. .103 .85
4 60. - 00 .045 .75

TABLE 5-11

PERFORMANCE OF THE ADAPTIVE HYBRID CODING SCHEME FOR THE ANGIOCARDIOGRAM

IMAGES. SAME MEASURED STATISTICS WERE USED FOR ALL CLASSES. SUB-BLOCK

SIZE = 16 x 16.

S. BIT-RATE PER PIXEL SIGNAL TO NOISERATIO IN dB
CLASSICLASSr- - - - CLASS OVE COMPRESSION CSIGNASS CLASS C[ATI OVER

1 2 3 4 ALL RATIO 1 2 3 4 ALL
1 .02 .05 .13 .35 .0625 128 35.95 34.34 33.44 33.37 35.00
2 .039 .12 .28 .70 .1250 64 38.39 37.24 36.19 36.17 37.66
3 .10 .25 .60 1.17 .250 32 40.61 39.35 38.81 38.02 39.874 .25 .60 1.0 1.7 .50 16 42.08 41.59 40.73 39.67 41.64
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(a) Original (b) C.R. = 128

10131 009

(c) C.R. 32 (d) C.R. 16

Images resulting from data compression of angiocardiogram images. The

top half of each image approximately corresponds to an end of systole

and the bottom half to the end of the following diastole.

Figure 5-11
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CHAPTER VI

DATA COMPRESSION FOR NOISY CHANNELS

In the data compression designs considered in the previous chapters

we did not consider the effects of channel errors (in transmission or

storage-retrieval). The performance of a data compression method was

evaluated assuming a noise-free channel. However, in the presence of

channel errors (bit reversals) a coding scheme designed without regard to

channel noise characteristics could yield poor to disastrous results.

A common approach for reducing the effects of channel errors has

been the use of error correcting codes [45] which aim at minimizing the

probability of bit error by introducing redundancy in the code word

(blocks 4 and 6 of Fig. 1-1). However, a better design would be to in-

corporate channel characteristics in the data compression algorithm itself,

(blocks 3 and 7 in Fig. 1-1), e.g., in the design of quantizer [41],

design of predictor coefficients for DPCM transmission [14], periodic

reinitialization of DPCM loops, etc.

Most conventional error correcting codes provide equal protection

to all the bits for a Gaussian binary symmetric channel. Oftenall the

data bits do not have equal importance. For example, in transform coding

the transform coefficients have highly uneven distribution of mean square

energy and different bits of the same coefficient have unequal effect on

S the mean square energy. For example, in a transform image coding scheme

described in [511 certain bits which have "significant" effects on image

quality are identified and only these bits are provided protection by

using error correcting codes. However, the experimental method used

?'
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there for identifying the significant bits is tedious and does not have

any systematic quantitative formulation. Also, all the significant bits

are provided equal protection, although their effects on the image quality

vary considerably.

6.1 Channel Encoding-Decoding of a Random Variable with MSE Criterion:

Crimmins, Horwitz, et al.[18.19] have proposed an alternative

method of encoding numerical data. Their method is based on minimizing

the mean square error (MSE) due to channel noise rather than minimizing

the probability of bit-error. They find the optimum encoding and decoding

rules for transmitting a set S of equispaced and equiprobable real numbers

over a memoryless channel using certain group (or block) codes. The set

k
S contains K elements where K = 2 , integer k > 0, and the code words are

chosen from a given group G of order K. Each member of group G is a code

word of length n bits (n > k). G is thus a subgroup of the binary group

V containing all the code words of length n. Both G and V are groups

under exclusive-or operation (denoted by ®).

In [18,19] the decoding rule is restricted to map back into the

set S. Wolf and Redinbo [78,79] have extended these results to the case

where the optimum decoder maps into the field R of real numbers. No

method, other than exaustive search, for finding the optimum subgroup G

has been found.

Usually the finite set S contains the quantized values of a con-

tinuous random variable, say y. For example if y is a random variable rep-

representing the intensity of an image, then S = {0,1,...,255} could

represent digitized values of pixels for 8 bits/pixel digitization.
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Except when y is uniformly distributed the set S of its quantized values

cannot be equispaced and equiprobable at the same time for k > 1. If y is

non-uniformly distributed and is quantized using the minimum mean square

error Max quantizer, the set S is neither equispaced nor equiprobable for

k > 1. The procedure of [79] for finding the optimum encoding rule does

not apply to such cases. This still remains an open problem. The optimum

decoding rule is still given by the conditional mean [79]. Based on our

experimental results we believe that the codes generated by the method of

[79] could be used for the nonuniformly distributed y with great advantage

over the conventional error correcting codes.

SQUANTIZER ENCODER g CHANNEL DECODER y

Figure 6-1: PCf Transmission of a continuous Random Variable having zero
mean and unit variance over a noisy channel

Figure 6-1 shows a PCM transmission scheme for noisy channels. Let

Xk be a k-bit quantization function of a random variable y defined by

= for y. < y < Yj+IY< s.

j = 1,2,...,K

where y1 and yK+1 are the minimum and the maximum values of the random

variable y and

yi < Y if i <.

__.. -- A ' M
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Then it follows that S = {Sl,S 2 '.... sK} is an ascendingly ordered set of

real numbers. Let H be the group of all k-bit binary code words arranged

in the natural order, i.e., the jth element of H is the k-bit binary repre-

sentation of the integer j. Let

1-1
k : S -- H

be an ordered mapping of S onto H. We would like to point out that under

this mapping the optimum encoding procedure of [791 provides maximum pro-

tection to the most significant bit of h EH and increasingly lesser protec-

tion to the lesser significant bits. For most distributions and quantizers

of practical interest this results in a significantly better mean square

performance than equal bit error protection encoding. This is our ration-

ale behind using the mean square encoding procedure of [79] even though it

is not optimum for nonuniform distributions. Let

1-1
@n,k :H G

1-1
S -- G

then 0 = n,k 0 l is the encoding rule, where 0 represents composite

function operation.

The channel error function v transforms an n-bit code word g E C

into another n-bit word v E V randomly and is described by the transition

probability P(vjg). Let

V gEDu

where u is an n bit error word. Let us assume that the channel is

memoryless, i.e.,
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P(vlg) = P(v glO) P(uIO)

where 0 is the identity element of V. The functionn is then completely

characterized by P(uIO), V uE V. The decoding function X maps the n-bit

word v into a real number y*. We define

eq = s-y, q(k) = [e 1/CT
q q

ec = y* -s, c(n,k) = E[
e  / 2

2 2

e = y*-y, t(n,k) = E[e 2i/J
2

t t..

where q, c, and t are the quantization, the channel, and the total (quan-

tization plus channel) mean square distortion functions and C2 is the

variance of y. The optimization problem can now be stated as follows:

Given n, r and thE distribution of y, find k, a, B, X and G such that the

total distortion, t(n,k) is minimized.

The problem as stated above is quite difficult and the joint optimi-

zation of the quantization and the encoding seems untractable at the

present. A solution for a special case of the above problem has been

given by Kurtenbach and Wintz [41]. They assume k = n (which implies

G = V), fixed (e.g., 6 = ), and X = C-i and find an optimum quantizer a.

This does not provide protection for channel errors by introducing redun-

dancy. The performance of such a scheme is usually not as good as those

which do provide protection by introducing redundancy.

To simplify the problem, we separate the quantization and the encod-

ing. We choose a to be the optimum Max quantization function [47], which

minimizes the quantization distortion q. For any given a and G the

* decoder X which minimizes the channel distortion c is given by the

conditional mean [78,79], i.e.,

* _
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A(v) = E[sJv] (6-1)

= I s-P(slv)
sES

I s-P(vls)-P(s)IP(v)

1 s.P(v$(s)).P(s)/P(v)
s ES

_sES (6-2)

s ES

where F(s) is the probability of the quantizer output s, which can be

calculated for any givenct.from the distribution of y. If a is the Max

quantization function, then it can be verified that (6-1) also implies

X = E[ylvJ. Let P(v,s) be the joint distribution of the random variables

s and v. Then the channel distortion is given by

c k = E[fy * )
2

= E[{X (v)-s)2]

I I fX(v)-s}2p(v,s)
sES v(-V

I I fX(v)-s}2p(vls)P(s)
SES vV

I I fX(v)-s,2P(v(@ (s)jO).P(s). (6-3)
s(ES vV

Now we establish the following relationships between y, s. y e eq. e Cand

e .
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Theorem 6-1: If ct is the Max quantization function and X is given

by (6-1), then the following hold

(i) E~s-e q 0 (6-4)

(ii) E[y*-e c] 0 (6-5)

(iii) E[Y*.e t] 0 (6-6)

Proof: Let f Y(y) be the probability density function of y. Then

the following holds true for the Max quantization (471

s ryi+l yd 1 < i < K (6-7)

Sj yf*(Y~

Part (1) of the theorem is a well known result for the Max quantizer and

will not be proved here.

The right hand side of (6-5) can be written as

E[y* ecl = Ely*(y*-s)I

=ECY*2 j - E~y*s] (6-8)

Now

=~~s E[X(v)-s1

I I s-X(v).P(S,v)
sES vGCV

I I s-X(V)-P(Slv)P(v)
s v

l fx(v)'P(V) I S-P(ajv)}
V S

(N D(v)-P(v).E[slv]1
V
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- IX(v)P(v)'X(v) [using (6-1)]
V

= E[{x(v)} 2

= E[y* 2 ]  (6-9)

Thus, from (6-8) and (6-9) we have

E[y*.e C 0

which proves (6-5).

The left hand side of (6-6) can be written as

E[y*e t E[y*(y*-y)]

= E[y 2 
- E[y*y]. (6-10)

Since

E[y*y] = XA(v)" yfylv(y)dy.P(v)
vV

{K~ Li+lfyd si }
Usx(v)P(v) w yfh(y)dyP(sIV),

v i=l fYi

Using (6-7) we have
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E[y*yI = IX(v)'P(v)" {siP(s Ilv)
v

= 7X(vl'P(v)" E(sjvI
V

= 7x(v)-P(v).X(v)

v

= E[fX(v)} 2 1

= E[y*
2 ] 

(6-11)

Thus, from (6-10) and (6-11) we have

E[y*-e t] - 0

which proves (6-6) and completes the proof of the Theorem 6-1.

Corollary: The errors due to the quantization and the channel noise

are uncorrelated, i.e.,

E[eqecI = 0. (6-12)

Proof:

E[eq e] = E[e q(y*-s)

= E[e qy* - E[eq s]

= EIy*(e -e )] - E[e s]
t c q

= Efy*et I - E[y*ec] - Ese q]

=0

which follows from the theorem. A direct consequence of (6-12) is

t(n,k) c(n,k) + q(k) (6-13)

"
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For a given n, the optimum value of k, k', is found by computing t(n,k)

for 0 < k < n and finding the minima of k vs t(n,k). Let

d(n) = min.ft(n,k)} = t(n,k'). (6-14)
k

Then d(n) vs n gives the distortion-rate function of the PCM channel. We

call the optimization of (6-14) channel optimization.

For uniform distribution of y the optimum encoding function 6 for

a given G can be found as in (791. The same could be used for some other

distributions of practical interest as pointed out earlier. No simple

method for finding the optimum $ for such cases has been found so far.

6.2 Coding of a Random Process for Noisy Channels:

The concept of channel optimization for a single random variable

could be extended for coding images and other correlated signals or

random processes. In particular we consider the transform coding method.

With respect to channel errors transform coding has an advantage over

the predictive or hybrid methods. Since each transform coefficient is

coded completely independently, any error due to the channel noise does

not effect the other coefficients. On the other hand in predictive coding,

the errors due to channel noise accumulate at the time of reconstruction

at the receiver. This is because unlike the quantization errors the

channel errors cannot be fed back in the prediction loop at the trans-

mitter. For optimization of prediction loops for DPCM transmission of

images over noisy channels, see [14).

Figure 6-2 shows a transform coding scheme with channel optimiza-

tion. X is an M x 1 real array and

y 'x
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is an M x 1 array of transform coefficients, where T is an M x M

unitary transform. We assume for simplicity that all the transform

coefficients are real, identical distributed, and have zero mean. Let

a 2(m) _ El[y2(m)]

where y(m) is the mth transform coefficient. Let us also assume that the

columns of the transform matrix T are arranged in an order such that

a 2(1) >a 2(2)1> ... > C2(M). (6-15)

Then the total distortion between the input array X and the repro-

duced array X* is given by

D = E[(X-X*)T(X-X*)]

= E[(y-y,)T(y-y,)]

M 2
M E[{y(m) - y*(m)l 2

I a 2(m)t(n(m),k(m))
m71

Assuming that for each n(m) the optimum value k'(m) is used, we obtain

M2

D I 2(m)d(n(m)) (6-16)

We would like to minimize D subject to the constraint

' n(m) = b (6-17)
u~l

where b is a given rate in bits/sample. We assume that 8 and G for

various values of pair n,k) are chosen such that the distortion-rate
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function d(n) is a non-increasing function of n. This condition can

always be satisfied in practice. The minimization of (6-16) subject to

(6-17) is identical to the bit allocation problem discussed in chapter IV

except that the quantizer distortion function, q, has been replaced by

the optimum total distortion function, d. However, it is not easy to

approximate d by piecewise continuous functions as has been done for the

quantizer distortion, q, for some commonly used densities [86]. Thus,the

use of integer bit allocation procedure of [861 becomes even more

important in this case.

It could be easily verified that the K-L transform would be

the optimum unitary transform for the scheme described above.

6.3 Experimental Results and Distortion-Rate Functions:

We have carried out simulations for an important class of channels,

the binary symmetric channel with probability of bit-reversal p. We

report results for the PCM transmission of a random variable (without

loss of generality we assume zero mean and unit variance) for three commonly

used densities, the Gaussian, the Laplacian, and the uniform. The uniform

density also gives the lower bounds for the quantizer distortion, q(k),

and the channel distortion normalized by the variance of s, i.e.,

c(n,k)/(l-q(k)). For quantization we use an approximation of the optimum

(Max) quantizer described in [4]. This approximation is very close to the

optimum. Table 6-1 gives the distortion-rate functions for the three

densities.

Using the algorithm outlined in (78], we have found some suitable

choices of the group G for various values of the pair (n,k). Table 6-2

.
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TABLE 6-1

QUANTIZER DISTORTION q(k) FOR VARIOUS DENSITIES.

ensit 2 4 5 , 6 7 8
UNIFORM .25 .0625 .0156 .0039 1.000981 2.4xlOi 6 xlO

- 5  1 -505

GAUSSIAN .368 .1204 .0356 .0098 1 .0026 .0006 i.00017 4,10- 5

LAPLACIAN .5001 .1835 .0571 .0160 1 .00421 .0011 1.00027 7x1O

TABLE 6-2

BASIS VECTORS {gi:i=l... k} OF GROUP G FOR (n,k) GROUP CODES.

1- 2 3 4 1

10000000 100000001 1000000011 10000000110
2 01000000 010000000 010000001 01000000101
3 00100000 001000000 0010000000 001000011ooooll

8 00001000 000010000 000'10000 0001000000

6 00000100 000001000 0000010000 00000109000
7 00000010 00000010 0000001000 0000001000000000010000000 00 10000000100 000001 000 0

000oo0ooo 0o00001 F T o- oo -T-T -- -TO

2 I 0100000 01000000 1 010000001 010000101 0 )000007.010
1 0010000 00100000 00100000 001000011 io00090101

4 75 0001000 00010000 000100000 0001000111 00O0000011
5 000000 i 00001000 000010000 000310,33 300 ,,0010 O0

6 0000010 00000100 000001000 00000100000 0001000000
7 _ 0000001 00000010 00000ol O0 000309 9 _Or, C_ 0 0____
1 100000 100000i 1000001 1 100000110 1000001110
2 0100000 0100000 01000001 010000101 01000010106 I 001000 0010000 00100000 00100011I

4 000100 0001000 00010000 00'310'111 0001099011
000010 0000100 00001000 000010000 0000100000

6 000001 0000010 1 00000100 0000010)0 0000010000
-' IUUUU [ 100001 1000011 ,9007  T -T 0 -00 I

2 01000 010000 0100001 01000101 010001010
3 5 0010 000 001000 0010001 001000101
4 00010 000100 0001000 ooolr,, i OOOO000

_____ 0000 __ 000010 0030100 ..o.'.;,ooooonoo -0100 01000 010001 01M01's 01001010

3i} 0010 00100 001000 0fi10011 I 00100101
4 000,0001 00010 000100 00011i 00010011I I' ! oo0100 01 ibl 0l--

0100100 01001 01001 1 001010

_ 3 001 0010 00100 001011 0010101

____,_ 01 kq  = 01jt~t T-2 [ 01 _ _ _ 0 O0 O001011
fl I 1 1, 6T1=3 ~ ~ ~ ~ ~ ~ l 01k=06oo 130, 111

12 3 4 5 6

g 1 l0000011101 0100001 00 00100011 00010000110 001000001 oco001000co
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lists the basis vectors of these groups. The basis vectors have been

arranged so that the encoding function has a very simple form described

below. Let, for any s E S

h =v k(s) h E H (6-18)

and let h3 be the jth most significant bit of h. Then the code word, g,

is given by
k

g =(s) 6 Gn,k(h) = I ®h-gj (6-19)
j=l

where j ®denotes the exclusive-or summation, the dot represents the

binary product (or 'and' operation), and gj's are the basis vectors of

Table 6-2. We use (6-2) for decoding and (6-3) for the calculation of

the channel distortion.

Tables 6-3 and 6-4 give the channel distortion, c(n,k), and the

total distortion, t(n,k), for the Gaussian density for p = 10- 2 and

p = 10- 3 for various values of (n,k). Tables 6-5 and 6-6 give the total

distortion for the uniform and the Laplacian densities. The channel

distortion for these densities can be easily obtained by subtracting the

quantizer distortion given in Table 6-1 from the total distortion.

Table 6-7 shows the effects of a proper choice of $. The normal mapping

here corresponds to the mapping obtained by the procedure of [78] which

is optimum for the uniform density.

We note from (6-2) that the decoder is dependent upon the channel

bit-reversal probability p. While from (6-18) and (6-19) we note that

the encoder is independent of p for a givenG. In practice p might vary

from time to time and thus cannot be known exactly. So it becomes

necessary to know the robustness of the scheme as p deviates from the
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design value. Table 6-8 shows that the scheme is indeed quite robust

to a wide variation in p.

Figure 6-3 shows the effect of varying k on the total distortion

for a fixed rate (or n). The minima of the curves correspond to the

optimum value of k. Figure 6-4 gives the distortion-rate functions for

various densities with channel optimization. We notice that as the channel

becomes noiser, the distortion-rate curves start flattening.

We have also evaluated the performance of the scheme for two

important classes of discrete random processes. The first one is a one-

dimensional first order Markov process with one step correlation para-

meter p = .95. For this process the discrete cosine transform has been

known to perform very close to the K-L transform [2]. Hence the matrix

T has been chosen to be the discrete Cosine transform [2]. Figure 6-5

shows the distortion-rate curves for this process for Gaussian distribution.

The second class is the 2-D random field with the isotropic covar-

iance model given by (A-2) with pi = P = .95. Once again, we use the

discrete Cosine transform, because as shown in Appendix B it per-

forms very close to the K-L transform. Figure 6-6 shows the distortion-

rate curves for this process with Gaussian distribution for array sizes

* of 16 x 16 and 64 x 64. Figure 6-7 shows the bit assignment pattern for

the 16 x 16 array size at 1 bit/sample rate. Figure 6-8 shows the per-

centage of bits assigned for channel error protection (or redundancy) as

a function of rate and array size. We notice that for low channel noise

-3
(p - 10 ) this percentage is almost constant for different rates as well

as array sizes. Even for high levels of channel noise (p _ 10- 2) the

*: variation is not too large. Another noteworthy fact is that the channel

* III__ _ _ _I I
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6654332211111000 7654332221 1 1 1 100
654332221 1 1 1 1000 654433221 1 1 1 1000
544332221 1 1 10000 544332221 1 1 1 1 000
43332221 1 1 1 10000 443332221 1 1 1 1 000
33322221 1 1 1 10000 33332221 1 1 1 1 0000
2222221 1 1 1 1 00000 33222221 1 1 1 1 0000
222221 1 1 1 1 1 00000 2222221 1 1 1 1 00000

i 2221 1 1 1 1 1 1000000 i 22221 1 1 1 1 1 1 00000
I 1 1 1 1 1000000 021 1 1 1 1 1 1 1 000000
1111111ll l100000000 111111111 ll l0000000

1 1 1 1 1 1 000000000 1 1 1 1 1 1 1 00000000
1 1 100000000000 1 1 1 1 1 10000000000

1 100000000000000 1 1 1 000000000000
0000000000000000 1 000000000000000
0000000000000000 0000000000000000
0000000000000000 0000000000000000

p 1O-2 p= l -3

(a) Bit-Assignment for Quantization, k(ij).

jj--

543200000000000C 3300000000000000
4322000000000000 31 00000000000000

3220000000000000 0000000000000000
2200000000000000 0000000000000000
0000000000000000 0000000000000000
0000000000000000 0000000000000000
0000000000000000 0000000000000000

i 0000000000000000 f 00000000000000000 0 00 00 00 00 00 00 000 0 00 00 00 00 00 00 00 0
0 00 00 00 00 00 00 0 00 0 00 00 00 00 00 00 00 0
0 00 00 00 00 00 00 0 00 0 00 00 00 00 00 00 00 0
0000000000000000 0000000000000000
0000000000000000 0000000000000000
0000000000000000 0000000000000000
0000000000000000 0000000000000000
0000000000000000 0000000000000000

p = O-2 p =10- 3

(b) Additional Bits for Channel Error Protection, n(ij) - k(ij).
S

Bit-Assignment for 16 x 16 Cosine Transform Coding for a 2-D Isotropic

Random Field with pi P p = .95. Bit-Rate =1 Bit/Sample.

Figure 6-7
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optimization scheme requires much less redundant bits for channel error

protection than the conventional error correcting codes would require.

As mentioned in chapter IV, for most images the transform coeffi-

cients could be assumed to be Laplacian distributed. So we have also

calculated the distortion-rate functions of the 2-D isotropic covariance

model for this distribution and compare the channel optimization scheme

(Scheme-l) with a (15,11) single error correction encoding scheme (Scheme-2)

and a scheme with no error correction (Scheme-3). Figure 6-9 shows the

distortion-rate curves for 16 x 16 array size for these three schemes.

The distortion-rate curve for Scheme-2 for p = 10- 3 has been obtained

assuming that the effects of two and more errors ina 15 bit code could be

neglected due to their very low probability. Thus the curve is somewhat

optimistic and clearly the actual performance of the Scheme-1 relative

to the Scheme-2 would be even better than what is shown in Figure 6-9.

Roughly we can conclude that the performances of the Scheme-1 for p = 10- 2 ,

that of the Scheme-2 for p = l0- 3 , and that of the Scheme-3 for p = l0 - 4

are close to each other.

The results of the previous sections were applied for coding a

256 x 256 Girl image originally digitized to 8 bits/sample. An isotropic

covariance model with pi = Pj = .95 and Laplacian distribution for the

transform coefficients were assumed. The array (or sub-block) size of

16 Y 16 and the Cosine transform were chosen in the coding algorithm. The

-2performance of the Scheme-l and the Scheme-3 were evaluated for p = 10 -

10 - 3 at I bit/pixel.

5f

S.
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TABLE 6-9

PERFORMANCE OF DATA COMPRESSION SCHEMES AT 1 BIT/PIXEL
FOR COSINE TRANSFORM CODING OF 256 x 256 GIRL IMAGE.

BLOCK SIZE = 16 x 16.

SCHEME SIGNAL TO NOISE RATIO

S I p=. p=.Ol

SCHEME -1 31.90 dB 31.40 dB 29.85 dB
SCHEME -3 31.90 dB 25.96 dB 20.05 dB

Table 6-9 gives the signal to noise ratio (SNR) and Figure 6-10

shows the original and the coded images. Figure 6-11 shows various

absolute error images amplified ten times. Since the effect of a bit

reversal is localized within a sub-block of an image, we call it "blocking

effect". From Figure 6-10 we see that for Scheme-i the performances at

p = 0 and p = 10- 3 are almost indistinguishable and at p = 10- 2 the

blocking effects of channel noise are somewhat visible. While for

Scheme-3 (which provides no channel noise protection) the blocking effects

are quite visible even for p = 10 and very prominent at p = 10

The results of Table 6-9 are in excellent agreement with those of

Figure 6-9. Since Figure 6-8 gives the distortion normalized by the

variance, while the SNR is normalized by the peak-to-peak signal energy,

the SNR for an image could be obtained from Figure 6-9 by subtracting

the mean square error in decibels from a constant

C(peak-to-Peak signal)2dC logl2 2 dB

where a2 is the variance of the image. For the Girl image we get
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(a) Original 256 x 256 Image (b) Coded at 1 bit/pixel

8 bits/pixel p 0

(c) Coded at I bit/pixel (d) Coded at 1 bit/pixel

p = 10- 3 , Scheme-3 p = 3, Scheme-I

(e) Coded at I bit/pixel (f) Coded at 1 bit/pixel

p = 10- 2 , Scheme-3 p = 10- 2, Scheme-i

Images Resulting From 16 x 16 Cosine Transform Coding and Transmission

over a Binary Symmetric Channel.

Figure 6-10
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1.47

C =10 logio (255)2 dB

= 15.42 dB.

Thus from Figure 6-9 we obtain the SNR for the Girl image for Scheme-i

at p = i0- 3 and 1 bit/pixel as

SNR = 15.42 - (-15.48) dB

= 30.90 dB

which is very close to the actual performance given in Table 6-9 as

31.40 dB. Thus the model used for the data compression of the Girl image

seems to be realistic.

It is also apparent by viewing Figure 6-11 that there is a marked

difference between the distribution and the visual effects of the two

sources of errors, i.e., the quantization and the channel noise. Thus it

might be desirable to assign different weights to these errors. This

could be easily incorported in our schere by defining the total distortion

as

t(n,k) = q(k) + w -c(n,k)

and then performing channel optimization as before. A suitable value of

weighting coefficient w has to be found experimentally.

The concept of channel optimization can also be extended to

hybrid coding. This and the application to interframe coding have been

left for future research.

4r
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CHAPTER VII

SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FUTURE WORK

7.1 Summary

The new results presented in this thesis are summarized as

follows.

A hypothesis that the temporal dimension of most video motion

images consists mainly of a deterministic compenent, called motion, was

presented. A method for the visual characterization of the deterministic

component in a stationary mode, based on the temporal cross-sections,

was described. A piecewise linear translation model for the motion tra-

jectory estimation was developed. Based on this model, some simple

relationships to calculate statistical parameters of the random component

were derived.

A new technique for efficient estimation and coding of the deter-

ministic component was presented. The experimental results of application

of this technique to actual image data (Head and Shoulders and Chemical

Plant) show that it gives very good estimates and that the piecewise

linear translation approximation on a sub-block (of suitable size) basis

is reasonably good.

The registration of successive frames, called motion compensation,

results in a tremendous improvement in prediction (about 10 to 12 dB

decrease in interframe variance), and the remaining motion uncertainty

in the areas of motion is approximately uniformly distributed between 0

to 0.5 pixels along both the spatial axes. This high degree of registra-

tion results in temporal bandwidth reduction, and permits reducing the
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sampling rate of the temporal axis (i.e., frame skipping). The missing

samples (or frames) can be fairly accurately reproduced by zeroth or

first order linear interpolation.

Simple first order Markov covariance models, e.g., separable,

result in very poor performance for a transform coder (interframe as well

as intraframe) compared with the measured statistical models. Also, the

simple (or non-adaptive) transform coders, which are based on approxima-

tion of image random process by a wide sense stationary process, re-

sult in poor performance for motion images (mostly in reproduction of

sharp edges and motion). A significant improvement can be achieved by

an adaptive scheme which approximates the nonstationary process by four

piecewise stationary processes. However, for the biomedical projection

images the assumption of wide sense stationarity is reasonable.

Comparison of the non-adaptive intraframe and interframe schemes

for video motion images shows that the mean square performance of the

interframe scheme having a sub-block size of 16 x 16 x 16 can be matched

by an intraframe scheme having a sub-block size of 64 x 64 (the total

array size for both are the same).

The x-ray projection images have high correlation and the inter-

frame transform coding of these results in very high compression. The

effect of the distortion in the projection images on the reconstruction

of the 3-D object has been evaluated by reconstructing some transaxial

cross-sections (or levels) of the object. The results show that high

compression ratios are achievable on these images.

The performance of a hybrid scheme for the video motion images can
t be significantly improved by adapting the bit-rates and the statistics

to the local variations in the spatial and temporal characteristics. A
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simple criterion for this adaptation is proposed. Once again, this is

achieved by approximating the nonstationary process by four piecewise

stationary processes.

The incorporation of motion compensation and 2:1 subsampling of

temporal axis results in further significant improvement in the perform-

ance of the adaptive hybrid coding. For the Head and Shoulders images

high quality images (SNR = 37 dB) are obtained at .125 bit/pixel or a

compression ratio of 64 is realized.

The adaptive hybrid coding (without motion compensation) results

in very high compression ratios for the angiocardigram x-ray motion

images. Compression ratios of 32-128 seem to be realizable based on the

evaluation of still images. Spatial statistics of these images are

represented very well by stationary models.

A method for the joint optimization of source coding and channel

coding for PCM transmission over noisy channels has been presented. It

was shown how this method could be applied to image transform coding.

The rate distortion curves and the experimental results on images show

that this method performs significantly better than the conventional

error correcting codes or schemes with no channel protection. For example,

at 1 bit rate and channel error probability 10- 2, the proposed algorithm

improves the performance of an ordinary transform coder (designed for noise

free channel) by almost 10 dB.

The performance of the K-L, Cosine, Sine, Fourier, and Hadamard

transforms for several commonly used intraframe nonseparable covariance

models have been compared for an array size of 8 X 8. The results indi-

cate that for all these models (isotropic [531, NC1 [341, and measured

covariance of a Girl image) the Cosine transform performs very close to

.L4
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the optimum K-L transform, and the remaining transforms perform close to

each other. The performance of the K-L is about .05 dB better than the

Cosine and about 1 dB better than the remaining transforms. Earlier

results have shown the near optimality of the Cosine transform for

separable covariance model only.

7.2 Conclusions and Recommendations for Future Work

Based on the results and experimental evidence presented in this

thesis, we make the following conclusions and recommendations for further

investigation.

For multiframe motion images considered here, the motion between

successive frames can be very closely approximated by piecewise linear

translation of sub-blocks of size 8 x 8 to 32 x 32 with an average

accuracy of .25 pixel.

The interpolation of skipped frames along motion trajectory (ob-

tained by above approximation) results in excellent encoding of the

skipped frames. Thus, we conclude that the bandwidth of the temporal

domain can be significantly reduced by motion compensation.

The logarithmic search method of direction of minimum distortion

(DMD) could also be useful in many other applications of image registra-

tion, e.g., terminal guidance, template matching. This will be a subject

of our future research.

SThe performance of transform coding is highly dependent on the

statistical model, especially at high bit-rates. Measuring the statis-

tics in transform domain results in a significant improvement in per-

formance (2-4 dB). We have not addressed the question of how often the

S _ _ _ _ _ _ _ _
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statistics need to be measured for a given application. It has been

left for future investigation.

The mean square performance of the nonadaptive intraframe and

interframe transform coding schemes is comparable for equal total array

size of the sub-block, thus making the interframe transform coding un-

attractive for motion images. Further investigation is required to

establish the effect of array size on coder performance.

The adaptive variable bit-rate transform and hybrid coders have

much better performance. The result is improved by 4 dB over the non-

adaptive schemes, and the motion and the sharp features are better

reproduced.

Motion compensation and alternate frame skipping, with interpo-

lation of skipped frames along motion trajectory, results in a further

compression gain by a factor of two. Higher compression gain seems likely

by further reducing the sampling along of the temporal axis and interpo-

lation along motion trajectory. Although we have only applied the motion

compensation method of chapter II to hybrid coding, this and subsampling

of temporal axis can also be used with the predictive coding schemes of

chapter III and similar gains are expected. Application of motion com-

pensation to 3-D transform coding seems to be difficult.

The joint optimization of the source coding and the channel coding

results in significant improvement in performance of a coding scheme.

The concept of channel optimization for PCM transmission can be easily

extended to DPCM and thus to the hybrid coding methods.

The cosine transform performs very close to the optimal K-L and

its many computational advantages over K-L makes it a better choice for

image data compression for a variety of random fields.
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Some of the techniques of video bandwidth compression can be

applied to the biomedical x-ray images with very high compression. Further

research in this area is needed to more qualitatively evaluate the effects

of distortion on the medically useful information.

If
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APPENDIX A

MODELING OF INTRAFRAME IMAGE STATISTICS

A.1 Covariance Models for 2-D Images:

The second order statistics of images are required for many image

processing applications, e.g., restoration, and coding. Assuming that the

images belong to 2-D stationary random fields,a widely used model for

image covariances is the separable model given by

ILm,n 4 E[uk, ukim,k±n] = (pi)m(pi)n (A-l)

m,n > 0, 1il < 1, .1PI < 1

where u ij is the intensity of (i,j)th pixel and p. and p. are one step

correlation parameters along indices i and j. Without loss of generality

we have assumed images having zero mean and unity variance.

Although the model of (A-l) results in a very simple mathematical

analysis, it is known to be a poor approximation of the actual image co-

variances [34]. Another image model, which is called isotropic covariance

model [53,66], is known to be a better approximation for most images but

has not been used widely so far because of resulting difficulties in

analysis. It is given by

rm,n expI- Vim2 + tjn2l (A-2)

m,n > 0

where

a, = (2n{pi})
2 ; c= (9n{p })2

and pi = pj if the images are sampled at the same rate along both the axes.

' 4 : .
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Equation (A-2) then simply means that the correlation between any two

image points is an exponentially decreasing function of their goemetric

distance, while in (A-1) it is the sum of the horizontal and vertical

distances. From this statement it is clear that (A-2) would be a better

model for most images. In [35] it has been demonstrated that the models

which closely approximate (A-2) give much better performance in filtering

images than that of (A-l).

A model based on a finite difference approximation of an elliptical

partial differential equationreported in [34], and referred as NCU model

[34,35], has been found very useful in modeling image statistics. It is

a four point nearest neighbor non-causal (NC) model represented by the

relationship

ui = (ui-l,j + ui+lJ + ui'.i+ u i,j+l ) + CiJ (A-3)

where (c i j} is a zero mean, moving average field whose covariance function

is

E[Li,jCm,n] 2 (i- rn J-n - XY6 i_m+l j-n-l)  (A-4)

and 6 is the Kronecker delta function. Suitable values of a, a2 and y

could be found for a class of images. The application of this model for

filtering and data compression could be found in [35] and [75] respectively.

The calculation of covariances generated by this model is described in [34].

Sometimes a direct model of covariances is obtained by measuring

these quantities for a given image data as follows. Let K x L be the

size of a window over which the covariances are desired and M x N be the

size of data array, U, such that

I
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K << M and L << N

Then we define

M-K N-L M- N-L2

u u u i u (A-5)~ i=l j=l 'i ii=l j=l

0 < m < K-i, 0 < n < L-1

A.2 Computation of Transform Coefficient Variances:

For intraframe transform coding, as well as for interframe hybrid

coding,we need to know the statistics of images in the transform domain,

particularly the variances of the transform coefficients. Let U denote

an M x N block of an image, L denote an L X L unitary transform, V denote

the M x N array of the transform coefficients of U, and W the array of the

variances of transform coefficients. Then

V MUN

and W E[(vij1)21 1 < i < M, 1 < j < N

Let bar on the top of an array represent lexicographic ordering of the

elements into a one dimensional array and R = {ki'j : 0 < i < M-l,

0 < J < N-l} be an M x N covariance matrix of the image random field. We

wish to find the elements of W,given R. From the above definitions, it

could be easily seen that

V = M )U (A-6)

and W = Diag.{E[VV } (A-7)
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where® denotes the Kronecker product of matrices and Diag.fB} represents

a one dimensional array containing the diagonal elements of a square matrix

B. From (A-6) and (A-7) we have

W = Diag.{( pM E N E [ U] ( N 0 )}

or W = Diag. ® ®T A-8)
IM M N N

where is a N x N symmetric block Toeplitz matrix whose each element is

an M x M symmetric Toeplitz matrix. The elements of Q are given by

( i,j ;k,k = "I k-tj1, I i-jl 1 1 i,j < N , 1 < k,P, < M (A-9)

where the first two subscripts ofR refer to the addresses of the blocks

and the last two refer to the addresses of the elements within a block.

Thus,one can calculate the transform coefficient variances by

appropriately taking the transform ofk. We have also found an efficient

algorithm for computing (A-8) which exloits the Toeplitz structure of

and the fact that only diagonal elements of its transform are needed.

This will be published elsewhere.

Table A-1 shows the cosine transform coefficient variances for a

sub-block size of 16 x 16 measured over the 16 frames of Head and Shoulders

data set. Each sub-block was first transformed by a discrete Cosine trans-

form and then for each transform coefficient the variance was measured over

all the data sub-blocks. Table A-2 shows a 2-D 16 x 16 covariance matrix,

R, corresponding to the model of (A-2) and Table A-3 shows its correspond-

ing Cosine transform coefficient variance matrix, W. Comparing the cor-

responding entries of Tables A-I and A-3, the ratio is not too far from

t
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unity for the lower order coefficients, while for higher order coeffi-

cients the ratio is too far deviated from unity.

The consequence of the above is that at lower bit-rates, where no

bits are assigned to most higher order coefficients, the performance of

the coders using variances of Tables A-I or A-3 would be very close and

hence (A-2) is a good model. But at higher bit-rates, the variance distri-

bution of Table A-3 would tend to assign bits to higher order coefficients

unnecessarily. We have found experimentally that for high resolution

smooth images, which have very low variance for higher order coefficients,

a correction factor applied to the transform coefficient variances,

resulting from the model of (A-2), improves the performance at high bit-

rates considerably. One such correction factor, for Head and Shoulders,

data, is given by

wtj =hw . ( 0 ) , b = 50 (A-10)

where P (0i + Pi)/2

and h is chosen such that

M N M N

i -w! I I ,wi=1 j=1 j i--1 j=l '

Table A-4 shows the matrix of Table A-3 with the above correction factor.

We can see that the entries of Tables A-i and A-4 are close and hence the

model of (A-2) uith the correction factor of (A-10) is a better model for

coding the images belonging to the same class as the Head and Shoulders

images than (A-2) with no correction. However, this correction factor is

data dependent, but a suitable value of parameter b in (A-10) could be

found for other data.
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APPENDIX B

COMPARISONS OF 2-D TRANSFORMS

Several discrete unitary transforms have been used for intraframe

and interframe transform coding of images. These are Karhunen-Loeve

(or K-L), Fourier, Cosine, Sine, Hadamard, Haar, Slant, etc. Of these

the K-L transform is the optimum transform for data compression (the

performance criterion is discussed in section B.l) and is dependent on the

statistics of the data. The remaining transforms are data independent

and also have FFT type fast computational algorilams. For these reasons,

the others are preferred over the K-L in practice.

For a class of one-dimensional signals, i.e., first order Markov

process with high correlation, the discrete Cosine transform (or DCT) is

known to perform very close to the K-L transform f2,333. Since the 2-D

DCT is defined as a separable product (i.e., Kronecker product) of the

one-dimensional DCT, it follows fr.:m the above that it will rerform very

close to the 2-D K-L transform for a 2-D separable first order Mar nv

field given by (A-l), for highly correlated data such as images. Although

the 3eparable model of (A-i) has been used for data compression [67,68,87],

for reasons discussed in Appendix A, nonseparable models are preferable

in many cases. Therefore,the nonseparable models described by (A-2),

(A-3), (A-4), (A-5) and others have been used for data compression [49,53,

67,68,75] with better results than the separable model. The most commonly

used transforms in these studies are the Cosine and the Hadamard.

in. former for its better performance and the latter for its simplicity.

4,vver. no theoretical or experimental evidence exists for the relative

,r-ance of various transforms for nonseparable fields.
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We have done some evaluations of the performance of K-L, Cosine,

Sine, Fourier, and Hadamard transforms for a number of commonly used

nonseparable covariances. Our reults show that the Cosine transform

performs extremely close to the optimum K-L transform.

B.1 Transforms and Their Performance Measure:

Let U denote an MN x 1 vector array obtained by lexicographic

ordering of a real M x N 2-D array U. We define its transform by

V = Au (B-1)

If the transform matrix A could be written as

A = A I A2  (B-2)

where A1 and A2 are M x M and N X N matrices respectively, then it is

called a separable transform and (B-i) could be written as

V = A UAT  (B-2)
1 2(B2

where V is an M x N array obtained by inverse lexicographic ordering of

V. The K-L transform, characterized by maximum mean square energy com-

paction property, consists of the eigenvectors of the matrix L defined by

(A-9). Note that the K-L transform AK-L corresponding to an arbitrary co-

variance matrix R, which is not separable, is not separable. Let

a2 E[V 2 1 i < k < MNk

and the rows of A be arranged such that

2- > (B-4)
i j <j .
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Note that the sequence {a 2} consists of the elements of matrix W defined
k

in Appendix A.

We restrict our attention to transforms which are unitary

(all the transforms discussed above are unitary), i.e.,

- 1  *T
A =A

For the K-L transformthe sequence { 2} is nothing but the eigenvalues of
k

c2Rarranged in descending order.

We define the performance of a transform by a sequence of basis

restriction errors fb.: 0 < i < MNI defined by

MN ak/MNla2 0<I<M

b. =  I 0 N1(B-5)
I -i+l

bPN = 0.

Each b represents the normalized minimum mean square error if only i of

g the transform coefficients are retained. For the K-L transform the se-

quence {b.} is minimum, i.e.,i

(bi)KL < (bi) (B-6)
I

or 2 i

k=l k)K-L k i (B-7)

Thus, the K-L transform is optimum in the sense that it minimizes the

mean square error when some of the transform coefficients are discarded.

2Since {O k represents the mean square energy of the transform coefficients,

, • the property (B-7) is called maximum mean square energy compaction pro-

perty of the K-L transform.

K
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Another performance measure used in data compresion applications

is the distortion-rate function which is defined below. Let each trans-

form coefficient be independently quantized to a finite number of levels

and d. be the mean square error per unit variance due to the quantization

of the ith coefficient of array V, then

M N 2
D = i lid. (B-8)

gives the total mean square distortion in a transform coding system with

a noiseless channel. Let n. be the number of bits required to code the1

output of the ith quantizer. Then the rate is given by

= MN bits/sample, ni = integer > 0 (B-9)

where the sequence {n.) is chosen such that D in (B-8) is minimized for a
1

fixed R. The D vs RD curves obtained from (B-8) and (B-9) are the

distortion-rate functions for an integer bit allocation scheme.

B.2 Experimental Results:

We compare the performance of the K-L, Cosine, Sine, Fourier, and

Hadamard discrete transforms which are often considered for data com-

pression. The definition and properties of these and some other transforms

could be found in (3,31,58]. We have chosen two block sizes which are

of interest in data compression, i.e., 8 x 8 and 16 x 16. For some of the

comparisons the complexity of computing the eigenvalues of matrix

prohibits sizes larger than 8 x 8.

All the above transforms other than Fourier are real,and result in

MN real nonredundant transform coefficients for an array size of M x N.
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Since the data is assumed to be real, of the MN complex Fourier coeffi-

cients,only (MN/2 + 2) are real and (MN/2 - 2) imaginary components are

nonredundant (due to symmetry). It is therefore sufficient to consider

the variances of these components in obtaining the sequence {f.
1

Figures B-I through B-3 show the basis restriction errors for

the above mentioned transforms for M = 8, N = 8 and the three nonseparable

random fields described by (A-2), (A-3), (A-4) and (A-5) in Appendix A.

For the isotropic field of (A-2),the values of pi = p. = .95 were chosen

[53). For the noncausal NC1 model of (A-3) and (A-4) the values of the

parameters were chosen to be

2a = .2496, 0= .U744, y = .95.

These values were found by a least squares fit of the model and the

16 x 16 measured covariances for the Girl image shown in Figure 6-10(a)

[34,35]. For the measured covariance model of (A-5),the same Girl image

data was used.

Figure B-4 shows the distortion-rate curves for the isotropic

model assuming a Gaussian distribution for the transform coefficients.

The distortion has been calculated based on optimum mean square quanti-
I

zation [47] and optimum integer bit allocation (i.e., via integer pro-

gramming algorithm) of [861. Figures B-5 and B-6 show the distortion-

rate curves for the isotropic model of (A-2) and the separable model of

(A-i) respectively, for pi= Pj .95, M - N = 16. For this array size,

the K-L transform was excluded due to computational difficulties. Table

B-i gives the results of Figures B-4 and B-5 in numerical form.

From Figures B-i thru B-4 we note that the performance of the

Cosine transform is very close to the optimum K-L transform for all the

m , , _______
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three nonseparable models. While the performance of the remaining three

is not too close to the K-L but quite close to each other. The perform-

ance of the Cosine transform is about .05 dB inferior to the K-L while

that of others is about 1.0 dB. At a bit rate of 1 bit/pixel the Cosine

would require a rate increase of approximately 1% to match the performance

of the K-L while the others would require about 25% increase. From

Figures B-5 and B-6 we note that the relative performance does not change

much for a slightly larger array size as well as for considerable dif-

ferent models.

Since the Cosine transform can be implemented by a fast algorithm

[2,15] and is data independent, its computational advantages over the K-L

overwhelm the marginal difference in performance. The performance dif-

ferences between the Cosine, Sine, Fourier, and the K-L will decrease

further as the array size is increased. Since all these sinusoidal trans-

forms are asymptotically equivalent (33].

Thus the prime advantage of Cosine transform coding remains

in the common situation where a larger image is coded block by block with

typical block size of 16 x 16 or 8 x 8. Finally, we note that the re-

cursive block-coding of random fields via fast K-L transform algorithms

[361 achieve rates close to and better (!) than conventional K-L trans-

form block-coding method by coding the boundary variables of a block

separately and exploiting the interblock redundancy represented by the

boundary variables. Comparison with these algorithm is not made here

and is left as a future study.
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